ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
Beyond Exploit Scanning: A Functional Change-Driven Approach to
Remote Software Version Identification

Jinsong Chen'", Mengying Wu'", Geng Hong"", Baichao An", Mingxuan Liu*, Lei Zhang', Baojun Liu®,
Haixin Duan®! and Min Yang'
TFudan University, {jschen23, wumy?21} @m.fudan.edu.cn, {ghong, bcan20, zxl, m_yang} @fudan.edu.cn
#Zhongguancun Laboratory, liumx @mail.zgclab.edu.cn
$Tsinghua University, {Ibj, duanhx } @tsinghua.edu.cn

IQuancheng Laboratory

A Artifact Appendix

A.1 Abstract

In this paper, we present VersionSeek, a new functionality-
based tool for software version identification through func-
tional probe generation and automated response analysis. It
includes the source code for software deployment, functional
probe generation, response processing, and version identifica-
tion. The artifact also contains ethically filtered and validated
probes along with their corresponding locally generated re-
sponse outputs. In addition, it provides the source code and
training data used to construct the comparative baseline. A
comprehensive README file is included to facilitate the
effective use of the version identification tool.

It provides capabilities for functional probe generation, au-
tomated deployment, and version identification for five remote
software systems. Additionally, validation experiments are in-
cluded to demonstrate the effectiveness of these capabilities.

A.2 Description & Requirements

In this section, we detail the accessibility of our artifact and
specify the required hardware and software environments.
Our artifact consists of seven main folders: Deploy-
ment, Generation, ResponseProcessing, Versionldentification,
Probes, ProbeOutputs, and Comparison. The Deployment
folder contains automated deployment code for five open-
source software systems. The Generation folder in-
cludes code for automatically generating functional probes
using large language models (LLMs), guided by func-
tional changes and their corresponding contextual infor-
mation. The ResponseProcessing folder implements re-
sponse standardization and classification modules. The

IThese authors contributed equally to this work.

VersionIdentification folder provides automated version
identification modules tailored to the selected software targets.
The Probes and ProbeOutputs folders contain ethically fil-
tered and validated functional probes, along with their locally
generated response outputs. Finally, the Comparison folder
provides baseline implementations and training data for vari-
ous machine learning and black-box approaches used in our
comparative evaluation.

A.2.1 Security, privacy, and ethical concerns

We performed a comprehensive assessment of both the code-
base and datasets used in this study to ensure that no person-
ally identifiable information (PII) or sensitive content was
misused or exposed. In particular, since public access to re-
sponse data or identification results derived from real-world
servers could enable malicious exploitation or targeted attacks,
such data is not released as part of the artifact. Accordingly,
this artifact does not pose any additional ethical concerns.
Moreover, the artifact does not involve any destructive steps
during its execution.

A.2.2 How to access

Our artifact is available through Zenodo. The artifact
can be accessed at https://doi.org/10.5281/zenodo.
15576928.

A.2.3 Hardware dependencies

We implemented this artifact on a server with a 13th Gen
Intel® Core™ i7-13700 processor (24 cores), 32GB of mem-
ory, and a 1'TB SSD. Additionally, the LLLM used in our ex-
periments, Qwen2.5-32B-Instruct, was deployed on a server
equipped with an Intel® Xeon® Gold 6330 CPU @ 2.00GHz

https://doi.org/10.5281/zenodo.15576928
https://doi.org/10.5281/zenodo.15576928

(28 cores), 8 NVIDIA GeForce RTX 4090 GPUs, 512 GB of
RAM, 29 TB of HDD storage, and 447 GB of SSD storage.

A.2.4 Software dependencies

Although our experiments were conducted primarily on
Ubuntu 23.04, the artifact is compatible with any Linux-based
environment that supports Python 3.11. However, we recom-
mend using Ubuntu 22.04 or Ubuntu 24.04 for better sta-
bility. We use Miniconda for environment and dependency
management, and all required packages are specified in the
requirements.txt file located at the root of the repository.

A.2.5 Benchmarks

None.

A.3 Set-up

This section provides detailed instructions for setting up our
experimental environment. The setup utilizes MiniConda for
environment management and includes a verification step to
confirm the correct installation of all components.

A.3.1 Installation

To ensure full compatibility with VersionSeek, we recommend
creating a new conda environment with Python 3.11:

conda create -n versionseek python=3.11
conda activate versionseek

Next, install the required dependencies:

pip install -r requirements.txt
cd Generation

pip install -e ./"[qui,rag,code_interpreter,mcp]"

In addition, Docker and docker-compose are required for de-
ployment. Installation instructions can be found at:

e https://docs.docker.com/engine/install/

* https://docs.docker.com/compose/install/
standalone/

The necessary redis-tools package can be installed using:

sudo apt update
sudo apt install redis-tools

To ensure the proper functioning of certain services (e.g.,
Elasticsearch), the following system parameter must also be
configured:

sudo sysctl -w vm.max_map_count=262144

A.3.2 Basic Test

We provide a simple command to verify whether all required
system commands and Python dependencies are properly
installed:

python versionSeek.py --test

Upon successful verification, the output will be: All required
commands and Python modules are available.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): VersionSeek has been utilized to automatically gener-
ate new probes based on functional feature descriptions.
This is proven by the experiments (E1).

(C2): VersionSeek provides automated deployment capabili-
ties for five different software versions. This is proven
by the experiments (E2).

(C2): VersionSeek provides automated identification capabil-
ities for five remote software versions, as demonstrated
in Experiment (E3).

A.4.2 Experiments

This section outlines the experimental procedures used to
validate our key claims. Each experiment is organized into
three main blocks: Preparation, Execution, and Results.
(E1): [Functional Probe Generation] [15 human-minutes +
20 compute-minutesr + 5GB disk]: This experiment
demonstrates the capability to automatically generate
probes using the wildcard feature introduced in Elastic-
search 7.9.1 as a representative example.
Preparation: The following steps should be performed
within the Generat ion directory. First, the MODEL_NAME,
MODEL_URL, and API_KEY fields must be specified in
the probeGeneration.py file. We strongly recom-
mend using Qwen2.5-32B-Instruct as the underly-
ing model. The MODEL_URL typically takes the form
http://host/vl, where host refers to the address of
the server hosting the LLM deployment, which may ei-
ther be a locally deployed model or a third-party API
service such as OpenRouter.ai.
Execution: Run the following command to start the
probe generation process:
python probeGeneration.py
Results: After the script runs successfully, it au-
tomatically generates two files in the ./tmp di-
rectory. The filenames follow the pattern times-
tamp_search_releate_filepath.json and times-
tamp_get_interact_command.json, which store
the list of the most relevant retrieved documents and the
generated probes, respectively.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/standalone/
https://docs.docker.com/compose/install/standalone/

(E2): [Deployment] [20 human-minutes + 20 compute-
minutes]: This experiment illustrates the capability of
automated deployment by deploying a single version
across five different software applications.
Preparation: Following the procedures outlined in Sec-
tion A.3.1, complete the deployment of Docker and
docker-compose, and ensure that the network supports
pulling images from Docker Hub.

Execution: Run the following command to start the
deployment process:

python versionSeek.py --test-deploy

Results: The terminal will display the installation logs
along with the results of the commands used to verify
the success of the installation.

(E3): [Version Identification] [30 human-minutes + 30
compute-minutes]: Building upon the software deployed
in Experiment E2, this experiment identifies their corre-
sponding versions, demonstrating the capability of auto-
mated remote software version identification.
Preparation: Following the procedures outlined in Sec-
tion A.3.1, complete the installation of redis-tools and
configure the vm.max_map_count parameter accord-
ingly.

Execution: Run the following command to initiate the
version identification process:

python versionSeek.py --test-identify
Results: The terminal will display the installation logs
along with the version identification results, highlighted
in green. These include the reason for termination,
matched probing paths, and the most likely inferred ver-
sion.

A.5 Notes on Reusability
A.5.1 Debugging Support

To assist users in diagnosing service-related issues, we outline
arecommended procedure for debugging both the deployment
and version identification functionalities of VersionSeek.

For example, to test whether a specific version of Joomla
(e.g., version 5.1.0) is successfully deployed, users can run
the following command:

python versionSeek.py -d --software joomla \
--port 8880 --version 5.1.0

Concurrently, users can check if it is accessible by opening
another terminal and executing:

nc -zv -w 3 127.0.0.1 8880

A successful connection indicates that the deployment has
completed and the service is reachable.

While the service is still running, users can validate the
version identification functionality by executing the following
command in a separate terminal:

python versionSeek.py -i --software joomla \
--host 127.0.0.1 --port 8880

This command queries the running instance and attempts
to infer the deployed software version.

A.5.2 Applicability Support

Additionally, VersionSeek provides scripts that assist users
in performing semi-automated operations to add support for
new software versions. The typical workflow is as follows:

1. Follow the README in the Generation directory to fill in
the required parameters and generate new probes.

2. Use these newly generated probes to invoke the Deploy-
ment module, which collects responses from the target
software.

3. Process the collected responses by calling the methods
provided in the ResponseProcessing directory.

4. Save the final valid probes in the Probes folder in the
specified format, and store the corresponding responses
in the ProbeOutput directory.

5. Modify tree2scan and versionidentification in
the Versionldentification module according to the gen-
erated probes to add support for the new software ver-
sions.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Debugging Support
	Applicability Support

	Version

