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A Artifact Appendix

A.1 Abstract

Trusted-execution environments (TEEs) offer confidentiality
in shared environments. While Intel restricts performance
counter access, limiting load-balancing and anomaly detec-
tion on TEEs, AMD exposes performance counters to the host,
leaving the TEE vulnerable to side-channel leakage. In this
paper, we propose TEEcorrelate, a lightweight information-
preserving defense against performance counter attacks on
TEEs. TEEcorrelate reconciles monitoring capabilities of the
host and confidentiality requirements of the TEE, by statisti-
cally decorrelating performance counters. TEEcorrelate com-
bines two components, temporal decorrelation using counter
aggregation windows, and value decorrelation using fuzzy
performance counter increases.

The artifact for this paper models the behavior of TEEcorre-
late to analyze sample sizes, probabilities, and trend-following
performance. Releasing the artifact allows for simulation and
tweaking of the defense.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifact does not perform any destructive or privacy-
invasive actions.

A.2.2 How to access

Our artifact is available on Zenodo at https://doi.org/10.
5281/zenodo.15699920.

A.2.3 Hardware dependencies

As our artifact only simulates the behavior of TEEcorrelate,
it does not require any specific hardware. To generate sample
data, we require a system that supports performance counters,
which are available on most modern CPUs.

A.2.4 Software dependencies

Our artifact requires Python 3 (tested on Python 3.12.10), and
the following Python packages:

* numpy
* matplotlib

* scipy

To collect sample data, we use the Linux perf tool, which
is available on most Linux distributions.
A.2.5 Benchmarks

None.

A.3 Set-up

Set-up requires installing Python 3 along with the required
packages. On Ubuntu, this can be done with the following
command:

sudo apt install python3 python3-scipy \
python3-numpy python3-matplotlib

If the Nix package manager is available, it is possible to
create a shell with all required dependencies by running:

nix-shell -p python3 python3.pkgs.matplotlib \
python3.pkgs.scipy python3.pkgs.numpy

A.3.1 Installation

Download the artifact from Zenodo at https://doi.org/
10.5281/zenodo.15699920 and extract the archive.

A.3.2 Basic Test

The artifact contains multiple directories, each containing
different experiment scripts. Each script can be run inde-
pendently without any additional parameters, except for two:
base_simulation.py is a base class for the other scripts
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which does not run on its own, and simulate_defense.py
requires a parameter to specify the path to a trace file. We
have included a sample trace file sample_trace.txt in
the simulate_defense directory. Run the different scripts
(python <script_name>) to perform the experiments.

A.4 Evaluation workflow
A4.1 Major Claims

(C1): TEEcorrelate decorrelates the reported signal from the
real signal, while still following coarse-grained trends.
This is demonstrated by the experiments (E1) and (E2).

(C2): TEEcorrelate’s fast normal distribution approximates
a low-resolution binomial distribution. This is demon-
strated by experiment (E3).

(C3): The number of required samples to break TEEcorre-
late’s defense is high, and not significantly affected by
using a fast normal distribution instead of a binomial
distribution. This is demonstrated by experiment (E4)
and (ES).

A4.2 Experiments

(E1): Minimal Simulation [3 human-minutes]:
How to: Run the minimal defense simulation script
defense_simulation/simulate_small_trace.py.
Results: A figure gets rendered, showing the original
values (blue), and the decorrelated values (orange) for
a small, simulated trace. The green area signifies the
maximum deviation. Cf. Figure 4 in the paper.

(E2): Full Simulation [10 human-minutes]:
How to: Run the full defense simulation script
defense_simulation/simulate_defense.py with a
trace file (e.g., the included sample_trace.txt).
Optional: [20 compute-minutes] A custom trace file
can be generated using the Linux perf tool, e.g., by
running the following command:

perf stat -e ex_ret_instr -I 1 \
-e 12_pf miss_12_13 > trace.txt

This command runs until interrupted, and collects per-
formance counters every millisecond. It is important that
one of the counters counts the number of retired instruc-
tions, and that the name of the counter is edited in line 46
when not using the AMD ex_ret_instr counter. Tar-
get performance counter names need to be added to the
perfcounts list in the script.
Results: The left figure shows the original values (blue),
and the decorrelated values (orange) for a real perfor-
mance counter trace. On the right, we display the distri-
bution of the offset between real and decorrelated values
(cf. Figure 5 in the paper). Mean and standard deviation
of the offset are printed to the console.

(E3): Distribution Simulation [5 human-minutes + 10
compute-minutes]:
How to: Run the distribution simulation
script distribution_samplesizes/generate_
distribution_shape.py. The script runs until
interrupted, and updates the figure every 200000
samples.
Results: The figure shows a binomial-like distribution.
Thus, as claimed in (C2), the fast normal distribution
approximates a low-resolution (64 samples) binomial
distribution, while having a much larger output parame-
ter space.

(E4): Sample Size Calculation [15 human-minutes]:
How to: Run the sample size -calculation script
distribution_samplesizes/distribution_with_
32bit.py. The script generates a figure by calculating
the probability gradient (i.e., the difference in probability
between each possible offset and the next) for a 32-bit
fast normal distribution, a ideal gaussian distribution,
and 64-bit distributions with multiple offset values.
Optional: The default parameter of this script is set
to a deviation window size of 2048. To compute other
window sizes, the parameter DEVIATION_RANGE in the
script can be changed to the desired value.
Results: Figure 1 displays the CDF for the 3 different
functions (normal, 64-bit fast normal, and 32-bit fast nor-
mal). Figure 2 displays the probability gradient for the
same functions. Figure 3 displays the number of required
samples to distinguish two probabilities, at each point of
the curves. Figures 1, 2, and 3 generated by this script
correspond to figures 8, 6, and 10 in the paper, respec-
tively. We also print the minimum number of required
samples for each parameter set, which can be compared
to table 3 in the paper.

(ES): HQC Attack Runtime Computation [5 human-minutes,
5 compute-minutes]:
How to: Run the HQC runtime estimation script
distribution_samplesizes/hgc_runtime.py. The
script generates approximate attack runtimes for an at-
tack on HQC with TEEcorrelate enabled, with for the
deviation window sizes of 64, 2048, and 32768.
Results: For each window size and desired oracle ac-
curacy, we print the estimated runtime (in seconds) for
a single oracle query, the total runtime, and the number
of required fast divisions to the console. the minimum
calculated runtime can be compared with our claims at
the end of section 6.4 in the paper.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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