ARTIFACT
EVALUATED
susenix

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED

susenix
€0,

AVAILABLE REPRODUCED

USENIX Security 25 Artifact Appendix: NASS: Fuzzing All Native
Android System Services with Interface Awareness and Coverage

Philipp Mao Marcel Busch Mathias Payer
EPFL, Lausanne, Switzerland

A Artifact Appendix

A.1 Abstract

The artifact contains NASS’s source code which can be used
to fuzz native system services on COTS devices. Futhermore
the artifact contains scripts to run various aspects of the eval-
uation.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

NASS is designed to fuzz native system services on COTS
devices. There is a danger of damaging the device, forcing a
manual reset or making the phone unusable. For the artifact
evaluation, all experiments running on real phones will be run
on our testing devices exposed over ADB via port forwarding.
NASS does not pose a risk to the host system it is run on.

A.2.2 How to access

The artifact is publicly available at https://doi.org/
10.5281/zenodo.15577630 and https://github.com/
HexHive/NASS.

A.2.3 Hardware dependencies

NASS either runs against an arm64 COTS Android device
or an emulator. To evaluate NASS against FANS, an arm64
server is required in order to run the emulator with kvm sup-
port. Our experiments on COTS devices rely on the following
phones:

Xiaomi Redmi Note 13

Google Pixel 9

Samsung S23

OnePlus 12R

Infinix X670
Note that for the artifact evaluation, we provide access to
these phones remotly.

NASS’s host component should run on any Linux system.

We use an Ubuntu 24.04 docker container.

A.2.4 Software dependencies

We ship a dockerfile in our repository which sets up all the
software dependencies.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To counter the hardware dependencies on an arm64 linux
server and COTS Android devices, we provide access to an
arm64 and x86 server. The access credentials are communi-
cated in the Artifact access field on hotcrp.

The arm64 server is already setup with the emulator to
reproduce the FANS evaluation (paragraphs with FANS). Ac-
cess this server with ssh -p 2222 ae@65.108.89.50 The
x86 server has ADB access to our COTS testing devices,
which we are forwarding from our local desktop. (paragraphs
with COTS). Access this server with ssh ae@65.108.89.50
See Figure 1 for the overview of the evaluation setup.

For both servers clone the NASS repository (if the folder
is not present with)
git clone https://github.com/HexHive/NASS
Then navigate to the ./NASS folder. Run the ./setup.sh
script. The script will setup NASS by building the docker.
Then use ./run.sh to spawn a shell in the NASS docker
container.

Cors

sH, S ’ D

ﬁ—’rp L‘\/ = @

S eSS, BANS

ssmatnz -:n SSI\/ FANS
R.108.83.50

Figure 1: Overview of the evaluation setup.

https://doi.org/10.5281/zenodo.15577630
https://doi.org/10.5281/zenodo.15577630
https://github.com/HexHive/NASS
https://github.com/HexHive/NASS

A.3.2 Basic Test

All the steps here assume that you have logged in to the server,
that setup. sh has finished successfully and the commands
are inside of the NASS docker container.

COTS (ssh ae@65.108.89.50) Run the following command
to list the devices connected to the server over ADB:

adb devices

The output should be the following:

List of devices attached
089092526K000893 device
47030DLAQO012N device
RZCX312P76A device
a497c295 device
bai7gujvtchqeaus device

If this is not the case please let us know via hotcrp, it is
possible the devices have shut down or the tunneling of ADB
connections broke.

Assuming the five devices are present, run the following
command which will fuzz a service on the Pixel 9 for 2 min-
utes.

./eval/cots/test_fuzz.sh

The output should contain the libfuzzer log lines akin to:

[LIBFUZZ] INFO: seed corpus: files: 1 min: 8b max: 8b total: 8b rss: 28Mb
[LIBFUZZ] #2 INITED ft: 42 corp: 1/8b exec/s: 0 rss: 28Mb

[LIBFUZZ] #4096 pulse ft: 42 corp: 1/8b lim: 4096 exec/s: 2048 rss: 29Mb
[LIBFUZZ] #8192 pulse ft: 42 corp: 1/8b lim: 4096 exec/s: 1638 rss: 20Mb

[ORC][47030DLAQO012N] fuzzing iteration: 1 time: 62.078776836395264, crashes: 0, device borked: 0
[LIBFUZZ] #12486 NEW ft: 56 corp: 2/16b lim: 4096 exec/s: 1560 rss: 29Mb L: 8/8 MS: 1 ChangeCMd—
[LIBFUZZ] #16384 pulse ft: 56 corp: 2/16b lim: 4096 exec/s: 1489 rss: 29Mb

If this is displayed NASS was able to fuzz the
hardware.google.ril_ext.IRilExt/slot2 service on
the Pixel 9.

FANS (ssh -p 2222 ae@65.108.89.50) Run the following
command to fuzz a service on the arm64 emulator for 2 min-
utes.

./eval/fans/test_fuzz.sh

The output should contain the libfuzzer log akin to:
[ORCllemulator—5554] fuzzing iteration: 3 time: 24.192278385162354, crashes: 0, device borked: 0

[LIBFUZZ] #8192 pulse ft: 9 corp: 1/8b lim: 4096 exec/s: 372 rss: 28Mb
[LIBFUZZ] #9181 NEW ft: 70 corp: 2/16b lim: 4096 exec/s: 382 rss: 28Mb L: 8/8 MS: 1 ChangeCMd—

[ORCllemulator—5554] fuzzing iteration: 4 time: 30.4282705783844, crashes: 0, device borked: 0

[LIBFUZZ] #9245 NEW ft: 71 corp: 3/61b lim: 4096 exec/s: 385 rss: 28Mb L: 45/45 MS:

InsertEntry—

[LIBFUZZ] #9288 REDUCE ft: 71 corp: 3/40b lim: 4096 exec/s: 371 rss: 28Mb L: 24/24 MS: 1 InsertEntry—
[LIBFUZZ] #9295 REDUCE ft: 71 corp: 3/36b lim: 4096 exec/s: 371 rss: 28Mb L: 20/20 MS: 1 InsertEntry—
[LIBFUZZ] #9411 REDUCE ft: 71 corp: 3/24b lim: 4096 exec/s: 376 rss: 28Mb L: 8/8 MS: 1 DeleteEntry—

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Proprietary native services make up a large part of
system services running on COTS devices (Table 1).

(C2): NASS finds bugs in proprietary services running on
COTS devices (Table 5 and Table 6).

(C3): COTS services largely adhere to RPC design princi-
ples.

(C4): DGIE extracts accurate interface definitions from na-
tive services (Table 3).

(C5): NASS achieves parity with FANS (Figure 3, Table 4,
Figure 4).

A.4.2 Experiments

All of the described commands assume that setup. sh been
run on both servers and basic functionality test passed. We
recommend to start a tmux session after logging in so longer-
running commands are not terminated if the SSH connection
drops. Simply run tmux after logging in over SSH. Further-
more all commands should be run inside of the NASS docker.
To start the container use the . /run. sh script. The following
information including all the commands that need to be run
can also be found in the README . md file.

COTS (ssh ae@65.108.89.50)

(E1): [Numbers of prop. native services, C1] [5 human-
minutes + 15 compute-minutes]: Reproduce the numbers
on proprietary native services on COTS devices from
Table 1.

Preparation: Login to the COTS x86 server (ssh
ae@65.108.89.50) and start the docker with . /run. sh.
Execution: Run:
./eval/cots/native-service-stats.sh

Results: After the script has finished running, the num-
bers for each COTS device plus cumulative numbers are
printed. These numbers should show that native services
make up a large part of the system services running on
COTS devices (C1) and be consistent with the numbers
in Table 1. Note that the numbers do not match exactly
since the firmware of the COTS devices has been up-
dated since the evaluation was run for the paper.

(E2): [Fuzzing prop. native services, C2] [10 human-minutes
+ 3 compute-hours] Run NASS against proprietary native
services on COTS devices.

Preparation: Login to the x86 server (ssh
2e@65.108.89.50) and start the docker with . /run. sh.
Execution: The provided script takes care of interface
extraction, fuzzing and crash reproduction for a subset of
native services. The script expects a device id. List these
with adb devices then execute the run script with your
chosen device id. Note it should be enough to execute
the script once for a given device. For example, run:
./eval/cots/run-fuzz.sh 47030DLAQ0012N

to fuzz services on the Pixel 9.

Results: After the line ++EVAL++: analyzing
crashes the script will print the fuzzing output
directories along with the reproduced crashes. Lines

starting with ========... mark the fuzzed service.
If no reproducible crashes were found NO CRASHES
REPRODUCED is printed. If crashes were reproduced,
the following line is printed G@EREREQRECREPRODUCED
AND DEDUPLICATED@ERERREREQRREREERREREE, fol-
lowed by the output-path and the abbreviated
crash cause. After fuzzing the Pixel 9 we expect two
crashes to have been found, an abort due to fortify
and a null pointer dererefence. The output-path
contains the results of the fuzzing campaigns,
including the seed corpus, crashes etc. For repro-
duced crashes the full crashlog can be found in the

Manual DGIE

String16 STRING16UTF8
String16Vector | STRING16UTFSVECTOR
ByteVector BYTEARRAY

Table 1: Mapping from manual interface deserializers to
DGIE extracted.

the NASS docker with . /run.sh.

[output-folder]/reproduced/[crash-*]/crashlog.txt Execution: Run: ./eval/fans/ground-truth.sh

folder.

The output of this script, ran across all proprietary native
services on the five devices was used to produce Table 5
and Table 6. In the scope of the artifact evaluation we be-
lieve that demonstrating NASS’ functionality on a subset
of services is sufficent to reproduce this experiment.

(E3): [COTS service compliance, C3] [10 human-minutes

+ 1 compute-minutes] Double check the manual ground
truth analysis on COTS service compliance with the
three RPC design principles.

Preparation: Login to the x86 server (ssh
ae@65.108.89.50) and start the docker with . /run.sh.
Execution: The provided scripts aggregates the
numbers from the manually analyzed ground truth
(stored in . /eval/cots/dgie_eval.csv). Run:
python3 ./eval/cots/dgie_cots.py

Results: The script should print the numbers from Ta-
ble 7. The csv contains the result of the manual analy-
sis of compliance of COTS services with RPC design
principles. The columns Ab/St denote if the service is
compliant with RPC design principles "Abstraction of
IPC binding code" / "Standard Deserialization Routines".
Filling these columns requires manually analyzing the
services: The service binary is decompiled and the en-
try point function reverse engineered. We believe that
reproducing the csv in this way is outside of the scope of
this artifact evaluation. All the data needed to reproduce
the numbers, the service binaries along with the offset
to the entry point function, are part of the artifact stored
ateval/cots/dgie_cots_eval.

FANS (ssh -p 2222 ae@65.108.89.50)
(E4): [DGIE interface extraction, C3] [15 human-minutes +

2 compute-hours]: The evaluation script first extracts the
interface for the FANS evaluation services using DGIE
and then collects the results along with the results from
the manual ground truth and captured RPC requests to
reproduce Table 3.

Preparation: Login to the arm64 server (ssh -p 2222
ae@65.108.89.50), start a tmux session, and then start

Results: After the script has finished, the part of Table
3 that is automatically generated is printed. Check con-
sistency of the script output with the numbers in Table
3. The column #NASS Extr. RPC. funcs. was ana-
lyzed manually. To check that the interface extracted by
DGIE matches the ground truth interface, you can man-
ually inspect the extracted interface and compare it to
the ground truth interface. Both these are stored in json
format mapping command identifier to the sequence of
deserializers.

To print the manually extracted ground truth for the
installd service run

cat eval/fans/ground_truth/aarch64emu28/installd. json|jq

To print DGIE’s automatically extracted interface run
cat targets/aarch64emu28/installd/preprocess/interface. json|jg
For the installd service the automatically extracted
deserializers should match the manual ground truth
ones. Note that the notitation of deserializers in the
manual json does not exactly match the name from
the preprocessing, see Table 1. The same step may
be repeated if desired for the other FANS evaluation
services.

(ES): [FANS fuzzing campaign C4] [10 human-minutes + 13
compute-hours] Run a fuzzing campaign on the FANS
evaluation services with NASS, NASS (NI) and FANS.
Preparation: Login to the arm64 server (ssh -p 2222
ae@65.108.89.50), start a tmux session, and then start
the NASS docker with . /run.sh.

Execution: The provided script takes care of running
a shortened (1 hour) fuzzing campaign and produces
the coverage graphs. Run: . /eval/fans/run_eval.sh
ae to run the fuzzing campaign.

Results: After finishing the resulting coverage graph
pdfs can be found in ./eval/fans/run_out/ae/.
Download these from the server with: scp -r -p 2222
ae@65.108.89.50: /home/ae/NASS/eval/fans/run_out/ae_out .

The y axis is the code coverage from 0% to 100%, the
x-axis is the time. the resulting coverage graphs should
look similar to the first hour of the graphs in the paper.
We choose to run a shortened campaign due to the time
required to run the full experiment (around 2 weeks).

A.5 Notes on Reusability

We provide documentation in the repository on how to adjust
NASS to fuzz proprietary native system services on other
devices.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

