
USENIX Security ’25 Artifact Appendix: Treebeard: A Scalable and Fault
Tolerant ORAM Datastore

Amin Setayesh Cheran Mahalingam Emily Chen Sujaya Maiyya
University of Waterloo

A Artifact Appendix

This artifact provides a functional implementation of Tree-
beard. Treebeard is implemented in Go and includes all the
necessary components to demonstrate the core features of the
system, including its multilayer architecture (router, stash, and
ORAM layers), batching mechanisms, and fault-tolerant coor-
dination using the Raft consensus protocol. The source code is
publicly available at: https://figshare.com/articles/
software/treebeard_zip/29230676?file=55094552.

A.1 Abstract
This artifact provides a working implementation of Treebeard,
a scalable and fault-tolerant ORAM datastore. It includes the
full source code, configuration, and instructions for running
the system and observing its core functionality.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact does not involve any real user data, sensitive infor-
mation, or interaction with external systems beyond local or
cloud-based test deployments. All experiments are performed
using synthetic workloads. There are no known security, pri-
vacy, or ethical concerns associated with running or testing
this artifact.

A.2.2 How to access

The source code is publicly available at: https:
//figshare.com/articles/software/treebeard_
zip/29230676?file=55094552.

A.2.3 Hardware dependencies

The system can be run on any general-purpose machine. No
specialized hardware (such as SGX, GPUs, or TPUs) is re-
quired.

A.2.4 Software dependencies

To run the artifact, you need the following installed locally:
Go version 1.20 and Ansible. You will also need access to an

Ubuntu server. The Ansible scripts provided will automati-
cally install all required packages and configure the environ-
ment on the server. No additional manual setup is necessary
beyond running the Ansible playbook.

A.2.5 Benchmarks

A sample workload is provided with the artifact to test the
functionality of the system. This workload uses a YCSB-
style client to issue GET and PUT operations and verify that
Treebeard handles requests correctly. No additional datasets
or external inputs are required.

A.3 Set-up
A.3.1 Installation

Install Go v1.20 and Ansible using official instructions.

A.3.2 Basic Test

Please follow the instructions under the “Example Experi-
ment” section of the README.md file in the artifact reposi-
tory. It provides all necessary installation and configuration
steps to prepare the environment.

A.4 Evaluation workflow
A.4.1 Major Claims

None.

A.4.2 Experiments

None.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://figshare.com/articles/software/treebeard_zip/29230676?file=55094552
https://figshare.com/articles/software/treebeard_zip/29230676?file=55094552
https://figshare.com/articles/software/treebeard_zip/29230676?file=55094552
https://figshare.com/articles/software/treebeard_zip/29230676?file=55094552
https://figshare.com/articles/software/treebeard_zip/29230676?file=55094552
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


