ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 25 Artifact Appendix:
Private Investigator: Extracting Personally Identifiable Information
from Large Language Models Using Optimized Prompts

Dongwon Shin’
TKAIST

Seongho Keum"

A Artifact Appendix

A.1 Abstract

Private Investigator is an attack framework designed to op-
timize prompts for querying a Language Model (LM) in or-
der to extract Personally Identifiable Information (PII) used
during its fine-tuning process. This artifact provides Docker
image to setting up the experimental environment, along with
Python programs required to reproduce the results presented
in the paper. We tested the artifact on an Ubuntu 22.04 ma-
chine equipped with an NVIDIA GeForce RTX 3090 GPU.
The experiments require 24 GB of GPU memory, although
they can be executed on GPUs with smaller memory capacity
by appropriately reducing the batch size. We expect this arti-
fact to reproduce the evaluations shown in §5.2, Table 2, and
Figures 2, 10, 11, and 12 of the paper. However, please note
that the exact experimental results may vary due to the proba-
bilistic nature of text generation in large language models.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Private Investigator does not have any kind of security risks
to the machines that execute it. Furthermore, all the datasets
used for the experiments are publicly accessible.

A.2.2 How to access

The artifact is accessible through GitHub (https://
github.com/WSP-LAB/PrivateInvestigator) and Zen-
odo (https://doi.org/10.5281/zenodo.16748364).

A.2.3 Hardware dependencies

Private Investigator requires a Linux machine with an
NVIDIA graphics card. Due to the large size of LMs and
datasets, we recommend using a machine with at least 32
CPU cores, 128 GB of system memory, 24 GB of GPU mem-
ory, and 150 GB of disk space. We tested the Docker image

Leo Marchyok*
*Oregon State University

Sanghyun Hong* Sooel Son’

and Python programs on a machine running Ubuntu 22.04
with an NVIDIA GeForce RTX 3090 GPU.

A.2.4 Software dependencies

Private Investigator requires CUDA 12.1 and Python
3.10, along with the following Python libraries: Pytorch
2.1.2, Transformers 4.51.3, and Flair (https://github.
com/flairNLP/flair).

The artifact utilizes two datasets (Enron and TREC) and
four LM architectures (GPT-2, GPT-Neo, OpenELM, and
PHI-2). The Enron dataset can be accessed at https://
www.cs.cmu.edu/~enron/, and the TREC dataset is avail-
able at http://curtis.ml.cmu.edu/w/courses/index.
php/W3C_Email_Corpus. All four LM architectures are pub-
licly shared on Hugging Face (https://huggingface.co/
models). All architectures are accessible without any au-
thorization. However the Llama-2 tokenizer—used by the
OpenELM model-requires a model access token, which
can be obtained from its Hugging Face page: https:
//huggingface.co/meta-1lama/Llama-2-7b. We also
share the weights of LMs fine-tuned on the Enron and
TREC datasets on Hugging Face: https://huggingface.
co/SeonghoKeumn.

Instructions for downloading the required software,
datasets, and model weights are provided in § A.3.1.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Download the artifact from our GitHub
repository: https://github.com/WSP-LAB/
PrivatelInvestigator.

2. Install Docker and configure it to run Docker without
root privileges.

https://github.com/WSP-LAB/PrivateInvestigator
https://github.com/WSP-LAB/PrivateInvestigator
https://doi.org/10.5281/zenodo.16748364
https://github.com/flairNLP/flair
https://github.com/flairNLP/flair
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
http://curtis.ml.cmu.edu/w/courses/index.php/W3C_Email_Corpus
http://curtis.ml.cmu.edu/w/courses/index.php/W3C_Email_Corpus
https://huggingface.co/models
https://huggingface.co/models
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/SeonghoKeum
https://huggingface.co/SeonghoKeum
https://github.com/WSP-LAB/PrivateInvestigator
https://github.com/WSP-LAB/PrivateInvestigator

3. Install CUDA Toolkit 12.1. If different version of CUDA
is used, update the DockerFile accordingly.

4. To enable GPU access within Docker container, install
the NVIDIA Container Toolkit.

5. Build the Docker container by running the script: build.

sh [MODEL_ACCESS_TOKEN.

6. Launch the Docker container by running the script
launch_container. sh.

7. Download the datasets by executing the follow-
ing scripts: get_enron.sh, get_trec.sh, and get_
commoncrawl.sh.

8. Download fine-tuned model weights by running the
scripts: get_model_weights.sh and get_model_
weights_counter.sh.

For more details, please refer to the README.md file in-
cluded in the artifact.

A.3.2 Basic Test

To verify that all required software dependencies are properly
installed, run basic_test.py located in the experiments/
directory. This script specifically tests the TREC dataset and
evaluates its perplexity on the OpenELM model fine-tuned on
that dataset. If everything is set up correctly, it should print a
perplexity value of 3.6.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Private Investigator extracts more PIIs compared to the
baselines in 17 out of 24 cases. This is demonstrated by
the experiments (E2) and (E3). These experiments are
descibed in §5.1 and the results are reported in Table 2
of our paper.

(C2): Private Investigator extracts exclusive PIIs that are not
extracted by any other baselines. The claim is proven by
Experiment (E4). This experiment is described in §5.2
and illustrated in Figures 2, 10, 11, and 12 of the paper.

A.4.2 Experiments

All scripts and Python files for conducting the experimeents
are located in the experiments/ directory of the artifact. In
this section, the directory is omitted in the paths.

(E1): Prompt Generation [600 GPU-hours]: Private Investi-
gator generates prompts and store them under prompts/
directory.

Preparation: Download all required datasets and
model weights, and complete the environemnt setup as
described in § A.3.1.

Execution: Run the Python program run_generate_
prompt . py with the appropriate arguments. It requires
the following arguments:

e architecture: gptneo

* model_ckpt: weights/gptneo-enron, weights/gptneo-

trec

e surrogate: fine, pre

* target: email, phone, name

 from_scratch: True, False
To generate prompts using the pre-trained surrogate
model, omit the model_ckpt argument.
Generating prompts from scratch for all combinations of
datasets, surrogate models, and target PII types takes ap-
proximately 600 GPU-hours. To reduce computational
cost, the program is designed to use intermediate text
generation results stored in the text_generation/ di-
rectory by default, which allows prompt generation to
complete within an hour. To generate prompts from
scratch, explicitly set the from_scratch argument to True.
To generate prompts for all combinations at once, use the
following scripts: run_generate_prompt_interim.
sh (uses intermediate results) run_generate_prompt_
scratch. sh (generates from scratch).
Results: Generated prompts will be saved in the
prompts/ directory.

(E2): Extract PIIs [200 GPU-hours]: Private Investigator ex-
tracts PILs using the generated prompts.

Preparation: Complete experiment (E1).
Execution: Execute the Python program run_attack_
campaign.py with the required arguments:

* architecture: gpt2, gptneo, openelm, phi2

* model_ckpt: weights/[gpt2 | gptneo | openelm |

phi2]-[enron | trec]

* surrogate: pre, fine

* target: email, phone, name

* c:0.25

 temp: 1 (for email and phone), 1.4 (for name)
Adjust the eval_batch_size argument to balance GPU
memory usage and execution time, if needed.
To run Private Investigator across all combinations of
architectures, datasets, and PII types, execute the run_
extract_piis_all.sh script.
Results: The number of extracted PIls will be saved
inthe all_attack_result.txt file. These results will
be similar to those reported in the Table 2 of the paper.
Note that the exact numbers may vary due to the non-
deterministic behavior of the LMs.

(E3): Baselines [400 GPU-hours]: Run four baseline attacks:
Carlini et al. (Top-K), Carlini et al. (Temp), Carlini et al.
(Internet), and Lukas et al..

Preparation: Download all required datasets and
model weights, and complete the environemnt setup as
described in § A.3.1.

Execution: To run the Carlini et al. baselines, execute

baseline_carlini.py with the following arguments:

* model_path: weights/[gpt2 | gptneo | openelm |
phi2]-[enron | trec]

* method: topk, temperature, internet
* target: email, phone, name
 temp: 1 (for email and phone), 1.4 (for name)

The batch_size argument can be adjusted to balance GPU
memory usage and execution time.
To runt the Lukas et al. attack, execute baseline_
lukas.py with the following four arguments:

e architecture: gpt2, gptneo, openelm, phi2

* model_ckpt: weights/[gpt2 | gptneo | openelm |
phi2]-[enron | trec]

* target: email, phone, name

 temp: 1 (for email and phone), 1.4 (for name)
Similar to the previous attacks, generation batch size
could be controlled by the eval_batch_size argument.
To run all experiments at once, execute the following
scripts: run_baselines_email.sh, run_baselines_
phone.sh, and run_baselines_name.sh.
Results: All baseline results will be saved in the all_
attack_result.txt file. Note that the results may not
exactly match those reported in the paper due to the
probability based text generation.

(E4): PII overlap [less than one hour]: Count the number of
PIIs that are exclusively or commonly extracted by each
attack.

Preparation: Complete the experiments (E1), (E2), and
(E3).
Execution: Execute analyze_pii_overlap.py.
Results: The numbers of exclusively and commonly
extracted PIIs will be saved in the overlap.txt file.
Instructions for additional analysis experiments are pro-
vided in the README . md file included in the artifact.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

