
USENIX Security ’25 Artifact Appendix:
Exploiting Inaccurate Branch History in Side-Channel Attacks

Yuhui Zhu1,2 and Alessandro Biondi1

1Scuola Superiore Sant’Anna
2Scuola IMT Alti Studi Lucca

A Artifact Appendix

A.1 Abstract
Modern out-of-order CPUs heavily rely on speculative exe-
cution for performance optimization, with branch prediction
serving as a cornerstone to minimize pipeline stalls and max-
imize efficiency. When shared branch prediction resources
lack proper isolation and sanitization methods, they can intro-
duce security vulnerabilities that expose sensitive data across
different software contexts.

This artifact evaluates the behavior of two underdocu-
mented features of the Branch Predictor Unit: Bias-Free
Branch Prediction and Branch History Speculation. These
discoveries expose previously unknown cross-privilege attack
surfaces for Branch History Injection (BHI).

Based on these findings, we present three novel attack prim-
itives: two Spectre attacks, namely Spectre-BSE and Spectre-
BHS, and a cross-privilege control flow side-channel attack
called BiasScope. This artifact evaluates the presence of these
primitives using user-mode intra-process proof-of-concepts,
then evaluates their capability for mounting cross-privilege
attacks using custom syscall handlers. Finally, we demon-
strate the Chimera snippet using eBPF to achieve end-to-end
exploitation.

A.2 Description & Requirements
This artifact contains proof-of-concept (PoC) code demon-
strating the vulnerabilities discovered in the paper. The project
is organized into several submodules, each addressing differ-
ent attack scenarios:

• intra-ctx/: Intra-process PoCs demonstrating the
relevant microarchitectural behaviors and primitives to
perturb and exploit their side effects. This module cov-
ers BHB/PHT mistraining (Section 3.3), Spectre-BSE
(Section 5.4), Spectre-BHS (Section 6.2), and Chimera
snippets (Section 7).

• cross-ctx/: Cross-context PoCs showcasing how t

Intra-context demos. The intra-ctx/ module
consists of multiple sub-modules (implemented by
intra-ctx/tests/*.c) which demonstrate the ex-
ploited primitives, the corresponding microarchitectural
behaviors, and basic attack flows described in the paper
using intra-mode attack processes.

Cross-context demos. hese primitives can manipulate
branch prediction in kernel mode or another process.
This module covers BiasScope (Section 5.3), Spectre-
BSE (Section 5.4), and Spectre-BHS (Section 6.2).

• chimera-ebpf/: End-to-end Chimera attack (Sec-
tion 7) implemented as an eBPF program, demonstrating
practical kernel memory leakage.

Please refer to the README.md files in the root directory
and each subdirectory for details of all these submodules.

A.2.1 Security, privacy, and ethical concerns

While the artifact does not collect, transmit, or store any per-
sonal data and poses minimal privacy risks, evaluators should
be aware of several important risks. The cross-context demon-
strations require patching and recompiling the Linux kernel
on ARM machines, which may affect system stability and
integrity, so evaluators should use dedicated test machines
rather than production systems. Additionally, cross-privilege
BiasScope evaluation requires disabling Spectre mitigations
via mitigations=off, which temporarily reduces the sys-
tem’s protection against speculative execution attacks and
should be reverted after evaluation. After evaluation, the mod-
ified kernel and disabled mitigations need to be carefully reset
to restore the original security posture.

A.2.2 How to access

The artifact source code is publicly available on Zenodo
at https://zenodo.org/records/15612187. The
archived repository includes complete documentation with

https://zenodo.org/records/15612187

detailed setup and execution instructions. Reviewers may eval-
uate these artifacts on evaluator-owned machines, provided
their processors match the vulnerable models documented
in our paper. Please follow the instructions provided in all
README.md files.

A.2.3 Hardware dependencies

This artifact requires specific processor architectures to
demonstrate the novel branch prediction vulnerabilities de-
scribed in our paper. To fully reproduce the findings, evalua-
tors will need access to one or more of the following processor
families listed in Table 1.

A.2.4 Software dependencies

To compile the intra-context module of the artifact, make
and gcc are required. For cross-compilation targeting
ARM machines, you will need the aarch64-linux-gnu-gcc
toolchain installed on your system.

Compiling or cross-compiling the patched kernel requires
the standard kernel build toolchain, including appropriate
cross-compilation tools for target architectures.

The artifact is compatible with any standard Linux distri-
bution and does not require specific distribution versions.

For intra-context demonstrations in the intra-ctx/ direc-
tory, reviewers can simply cross-compile the PoCs for their
target architecture and execute them with provided parameters
in standard userspace without kernel modifications.

Cross-context demonstrations in the cross-ctx/ directory
require more advanced setup including applying provided
kernel patches to inject victim code into kernel space, recom-
piling and installing a modified kernel. Additionally, cross-
privilege BiasScope demonstrations require disabling Spectre
mitigations via bootloader (mitigations=off).

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Compiling Intra-Context PoCs

The intra-context demonstrations in intra-ctx/ require
no special setup in the evaluation environment. These self-
contained programs can be compiled and executed in standard
userspace. To build a test, first clean any existing builds:

1 make clean

For native compilation on the target architecture (e.g., build-
ing on an x86 machine for itself), use:

1 make TEST=<test_name > ARCH=amd64

For cross-compilation, specify the appropriate toolchain
using CROSS_COMPILE=:

1 make TEST=<test_name > ARCH=aarch64 CROSS_COMPILE=
aarch64 -linux -gnu-

Multiple intra-context demonstrations are available in the
intra-ctx/tests/ directory, with executables generated as
build/main:

• pht-idx: BTB/PHT mistraining experiments (Sec. 3.3)

• spec-bse: Spectre-BSE attack demonstration (Sec. 5.4)

• spec-bhs: Spectre-BHS attack demonstration (Sec. 6.2)

• chimera: Spectre-BHS attack demonstration using
Chimera gadget (Sec. 7)

Some modules support additional debugging flags that can
be passed during compilation by appending FLAGS="FLAG1
FLAG2 ..." to the make command:

1 make TEST=spec -bhs ARCH=aarch64 CROSS_COMPILE=
aarch64 -linux -gnu- FLAGS="DBG_ARCH_BH
DBG_JMP_LATENCY"

A.3.2 Compiling Cross-Context User-Space Programs

To compile individual cross-context demonstrations in
cross-ctx/, use the following command:

1 make $DEMO_NAME FLAGS="$FLAGS" TARGET="$TARGET"

The compilation requires the following parameters:

• DEMO_NAME: Specifies which demonstration to compile.
Available options include:

– scope-reader, scope-writer: Complementary
user-space programs for the BiasScope attack
that demonstrate reading from and writing to the
Branch Status Table (BST) to establish a covert
side channel.

– spec-bse-demo-el1: Cross-privilege demonstra-
tion of the Spectre-BSE attack, exploiting Branch
Status Eviction vulnerabilities.

– spec-bhs-demo-el1: Cross-privilege demonstra-
tion of the Spectre-BHS attack, leveraging Branch
History Speculation mechanisms.

• TARGET: Defines the target platform for compila-
tion, selecting appropriate platform-specific parameters
from target.h. Currently supported targets are imx8
(i.MX8QuadMax MEK) and rpi5 (Raspberry Pi 5).

• FLAGS: Optional compilation flags that enable specific
debugging features or attack variants. Platform-specific
flags are detailed in the respective demonstration sec-
tions below.

µarch Attack Compatibility Validated SoC
ARM Processors

Cortex-A72 (<= r0p3) BiasScope, Spectre-BSE NXP i.MX8QuadMax MEK
Cortex-A76 Spectre-BHS, Chimera Raspberry Pi 5
Cortex-A78/A78AE Spectre-BHS, Chimera NVIDIA Jetson AGX Orin

x86 Processors
AMD Zen4 Spectre-BHS (only ‘intra-ctx/‘), Chimera Ryzen 7 7840U
Intel Gracemont Spectre-BHS (only ‘intra-ctx/‘), Chimera N100
Intel Redwood Cove/Crestmont Spectre-BHS (only ‘intra-ctx/‘), Chimera Core Ultra 7 155H

Table 1: Availability of demos on tested hardware platforms.

A.3.3 Setting Up Custom Syscall Handlers

Cross-context demonstrations require custom syscall handlers
on ARM processors to facilitate kernel-space attack compo-
nents. You must patch the kernel using the code provided in
cross-ctx/kernel/ to establish these kernel-space compo-
nents.

1. Download the Linux kernel source code for your target
platform:

• For Cortex-A76 (Raspberry Pi 5): Use the Linux
kernel rpi-6.6.y branch from the Raspberry Pi
kernel repository (https://github.com/raspb
errypi/linux/tree/rpi-6.6.y).

• For Cortex-A72 (i.MX8QuadMax MEK): Use the
kernel included in the Yocto project distributed by
NXP, version imx-5.15.71-2.2.2 (https://gi
thub.com/nxp-imx/imx-manifest/blob/i
mx-linux-kirkstone/imx-5.15.71-2.2.2.x
ml).

2. Copy the custom syscall handler files from
custom_syscall/ to the kernel source code di-
rectory.

3. Apply the appropriate patch to
include/uapi/asm-generic/unistd.h to regis-
ter the syscall numbers:

• For Raspberry Pi 5: Apply rpi-6.6.y.diff

• For i.MX8: Apply lf-5.15.71-2.2.2.diff

4. Compile and install the modified kernel with the custom
syscall handlers:

• For Raspberry Pi 5: Follow the Raspberry Pi kernel
documentation (https://www.raspberrypi.co
m/documentation/computers/linux_kernel
.html)

• For i.MX8: Follow the NXP community guidance
(https://community.nxp.com/t5/i-MX-Pro
cessors-Knowledge-Base/i-MX-Yocto-Pro
ject-How-can-I-quickly-modify-the-ker
nel-and-test/ta-p/1129551)

A.3.4 Chimera eBPF PoC

To build the Chimera eBPF module in chimera-ebpf/, use
one of the following commands based on your compilation
target and platform:

1 make CROSS_COMPILE=aarch64 -linux -gnu- ARCH=aarch64
2 make ARCH=amd64

A.3.5 Installation

This artifact does not require any installation process and is
ready to run immediately after compilation. For installing
the patched kernel required by cross-context demonstrations,
please refer to the platform-specific documentation provided
by your SoC or board manufacturer, as detailed in the kernel
setup instructions above.

A.3.6 Basic Test

Run the intra-context pht-idx demonstration to test whether
you can successfully manipulate branch prediction as de-
scribed in Section 3.3 in the paper. Please follow the instruc-
tions in intra-ctx/README.md for guidance and expected
results.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): On Cortex-A72, the presence of a Branch Status Ta-
ble yields two potential side-channel attack primitives,
Spectre-BSE and BiasScope. This is demonstrated by
experiments (E1) and (E3).

(C2): On other processors listed in our paper, we can ma-
nipulate the Branch History Speculation mechanism to
influence history-based branch prediction and induce
unintended mis-speculation through Spectre-BHS prim-
itice. This is demonstrated by experiments (E2), (E3),
and (E4).

https://github.com/raspberrypi/linux/tree/rpi-6.6.y
https://github.com/raspberrypi/linux/tree/rpi-6.6.y
https://github.com/nxp-imx/imx-manifest/blob/imx-linux-kirkstone/imx-5.15.71-2.2.2.xml
https://github.com/nxp-imx/imx-manifest/blob/imx-linux-kirkstone/imx-5.15.71-2.2.2.xml
https://github.com/nxp-imx/imx-manifest/blob/imx-linux-kirkstone/imx-5.15.71-2.2.2.xml
https://github.com/nxp-imx/imx-manifest/blob/imx-linux-kirkstone/imx-5.15.71-2.2.2.xml
https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Yocto-Project-How-can-I-quickly-modify-the-kernel-and-test/ta-p/1129551
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Yocto-Project-How-can-I-quickly-modify-the-kernel-and-test/ta-p/1129551
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Yocto-Project-How-can-I-quickly-modify-the-kernel-and-test/ta-p/1129551
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Yocto-Project-How-can-I-quickly-modify-the-kernel-and-test/ta-p/1129551

A.4.2 Experiments

(E1): Passing dummy secrets through BiasScope side chan-
nel (1 human-minute + 1 compute-hour + 10GB disk):
How to: Patch the kernel, install the patched ker-
nel, and build the corresponding cross-context
demos scope-reader.c and scope-writer.c in
cross-ctx/.
Preparation and execution: Follow the instructions in
cross-ctx/README.md within the code package to
build the demo with kernel-user or user-user flavor. Note
that to demonstrate the kernel-user flavor of this primi-
tive, you must patch the kernel. Compiling the patched
kernel may take longer time and more disk space.
Results: By running the built demo program with
parameters described in cross-ctx/README.md, you
should be able to see the dummy secret being decoded
by the scope-reader.c program.

(E2): Inducing mis-speculation using Spectre-BSE and
Spectre-BHS in the same user process (1 human-minute
+ 1 compute-minute + 1MB disk):
How to: Build the intra-context demos in intra-ctx/.
Preparation and execution: Follow the instructions in
intra-ctx/README.md within the code package to
build your selected demo.
Results: By running the built demo program with
parameters described in intra-ctx/README.md, you
should be able to see microarchitectural marks indicat-
ing a successful Spectre-BSE or Spectre-BHS attack.

(E3): Inducing kernel-space mis-speculation using Spectre-
BSE and Spectre-BHS from user-space (1 human-minute
+ 1 compute-hour + 10GB disk):
How to: Patch the kernel, install the patched kernel, and
build the cross-context demos in cross-ctx/.
Preparation and execution: Follow the instructions in
cross-ctx/README.md within the code package to
build your selected demo. Note that compiling the
patched kernel may take longer time and more disk
space.
Results: By running the built demo program with
parameters described in cross-ctx/README.md, you
should be able to see microarchitectural marks indicat-
ing a successful cross-privilege Spectre-BSE or Spectre-
BHS attack.

(E4): Dumping kernel memory with Chimera eBPF PoC (1
human-minute + 1 compute-minute + 1MB disk):
How to: Build the demo in chimera-ebpf/.
Preparation and execution: Follow the instructions in
chimera-ebpf/README.md within the code package to
build your selected demo. Note that you may also need to
have a known byte sequence in a known kernel address
to evaluate the accuracy of the disclosure primitive.
Results: By running the built demo program with pa-
rameters described in chimera-ebpf/README.md, you

should be able to dump a piece of kernel memory at a
given address and given length using the side-channel
primitive.

A.5 Notes on Reusability
The submodule intra-ctx/ provides a versatile framework
to monitor and evaluate speculative execution. Researchers
interested in similar work may implement their own test mod-
ules to induce desired mis-speculation using novel techniques.
We plan to share updated versions of this code in our git
repository in the future.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Compiling Intra-Context PoCs
	Compiling Cross-Context User-Space Programs
	Setting Up Custom Syscall Handlers
	Chimera eBPF PoC
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

