
USENIX Security ’25 Artifact Appendix: Hercules Droidot and the
murder on the JNI Express

Luca Di Bartolomeo∗

EPFL
Philipp Mao∗

EPFL
Yu-Jye Tung

UC Irvine
Jessy Ayala
UC Irvine

Samuele Doria
University of Padua

Paolo Celada
EPFL

Marcel Busch
EPFL

Joshua Garcia
UC Irvine

Eleonora Losiouk
University of Padua

Mathias Payer
EPFL

A Artifact Appendix

A.1 Abstract
POIROT’s artifact contains the source code necessary to run
our Android native library fuzzer and static analysis passes.
This document describes how to set up our prototype, and
gives a brief overview of the resource requirements to repli-
cate some of the experiments conducted in our evaluation,
along with instructions to run them.

A.2 Description & Requirements
The artifact contains POIROT’s source code and scripts to
reproduce the evaluation.

A.2.1 Security, privacy, and ethical concerns

This artifact does not contain any threat to the system’s in-
tegrity or privacy. However, we still recommend running it
inside a sandboxed environment (either a VM or a container).

A.2.2 How to access

POIROT is accessible at https://doi.org/10.5281/
zenodo.15586319 or https://github.com/HexHive/
droidot.git.

A.2.3 Hardware dependencies

Our evaluation requires Android emulators to run the mobile
applications under test. Modern Android emulators require
ARM64 architecture for optimal performance and compatibil-
ity with contemporary Android versions.

To accommodate reviewers during the artifact evaluation
process, we provide access to two dedicated servers. The
first one is an x64 server, ssh -p 1234 ae@65.108.89.50,
which is used to run the static analysis tools for the first major
claim of our paper (C1).

The second one is an ARM64 server, ssh -p 1235
ae@65.108.89.50, which is used to run the fuzzing cam-
paigns for the second major claim of our paper (C2) and to

reproduce the case study crash for the third major claim of
our paper (C3).

This server enables reviewers to reproduce our experimen-
tal results without requiring them to have ARM64 hardware
locally. However, we note that those servers have more lim-
ited computational resources compared to the AWS cluster
infrastructure used in our original paper evaluation.

The difference in computational resources between the
evaluation servers and our original experimental setup should
not affect any of the major claims made in our paper.

A.2.4 Software dependencies

All software dependencies are managed through our Docker
container.

The Docker container ensures reproducible builds and elim-
inates dependency conflicts across different host systems. No
additional software installation is required on the host ma-
chine beyond Docker itself.

A.2.5 Benchmarks

As outlined in the paper, there are no clear benchmarks de-
fined by literature to evaluate Android native library fuzzers.
Therefore, included in the artifact we ship the most 100
popular Android applications. They can be found in the
target_APK folder.

Note: we kindly ask the reviewers to not redistribute the
APKs, as they are sourced from Androzoo and are subject to
their terms of use.

A.3 Set-up
A.3.1 Installation

To access the artifact servers, please provide your SSH public
key in the HotCRP comments.

ARM64 Server for Fuzzing Campaigns:

1. Login to the server (ssh -p 1235
ae@65.108.89.50).

https://doi.org/10.5281/zenodo.15586319
https://doi.org/10.5281/zenodo.15586319
https://github.com/HexHive/droidot.git
https://github.com/HexHive/droidot.git


2. Clone the POIROT repository: git clone https://
github.com/HexHive/droidot.git.

3. Change to the repository directory: cd droidot.
4. Run ./setup.sh to download dependencies and build

the Docker container.
5. Spawn a shell in the container: ./run.sh.

x86 Server for Static Analysis Tools:

1. Login to the server (ssh -p 1234
ae@65.108.89.50).

2. Clone the POIROT repository: git clone https://
github.com/HexHive/droidot.git.

3. Change to the repository directory: cd droidot.
4. Change to the static analysis AE directory: cd

static_ae.
5. Run ./setup.sh to download dependencies and build

the Docker container.
6. Run ./build_docker.sh to download dependencies

and build the Docker container.
7. Spawn a shell in the container: ./start_docker.sh.

A.3.2 Basic Test

ARM64 Fuzzing Server
(ssh -p 1235 ae@65.108.89.50)

Run the ./start_single_emu.sh script. After the script
has finished running adb devices should show at least one
emulator, emulator-5554, inidicating that the emulator was
started succesfully.

x86 Static Analysis Server
(ssh -p 1234 ae@65.108.89.50)

Run the ./basic_test.sh script. The script will analyze an
app with FlowDroid. After a couple of minutes, the script
should print Found 2 leaks.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Android dataflow state of the art tools do not scale to
large apks. POIROT’s analysis passes scale to large apks.

(C2): POIROT’s analysis passes positively impact coverage.
(C3): POIROT finds bugs in real-world apps.

A.4.2 Experiments

The first experiment will be run on the x86 server. The second
and third experiments will be run on the ARM64 server.

(E1): [C1] [10 human-minutes + 10 compute-hour]:
Preparation: Login to the x86 server (ssh -p 1234
ae@65.108.89.50) and open the script run_rq1.sh in

an editor to edit the NO_OF_APPS variable. In our pa-
per we used 100 apps, but with the timeout of 30 min-
utes and testing 5 tools, that amounts to 0.5h × 100 ×
5 = 250 hours. For the artifact evaluation we limited
the NO_OF_APPS variable to 10 apps. We believe this
reduced dataset is still representative of the original re-
sults.
In the folder target_APK we provide the 100 APKs
used in the paper (the most popular 100 apps) How-
ever, reviewers are also welcome to test with dif-
ferent apps. To do so, they can add new apps to
the target_APK folder, with both the folder and the
apk name as the package name of the app (e.g.
com.example.app/com.example.app.apk).
Execution: Start a tmux session with tmux and run the
script run_rq1.sh.
Results: The script prints the result of the various tools
and the failure symptom. The results should be congru-
ent with Table 2.

(E2): [C2] [10 human-minutes + 12 compute-hour]: Fuzzing
ablation experiment on POIROT’s analysis passes.
Preparation: Login to the arm64 server (ssh -p 1235
ae@65.108.89.50), start a tmux session with tmux and
then start the container with ./run.sh .
Execution: Run the ./run-ablation.sh script. The
script runs the ablation study fuzzing campaign, fuzzing
a subset of the apks from the dataset with /without the
argument value and call sequence analysis pass.
Results: After finishing the script generates
the plots from Figure 5 and Figure 6 in the
output-dir: $(datetime)_fuzzing_data. Down-
load them from the server: scp -r -P 1235
ae@65.108.89.50:/home/ae/droidot/[output-dir]
and inspect the pdfs. These should show that enabling
analysis passes results in coverage increase. (larger
green area).

(E3): [C3] [5 human-minutes + 20 compute-minutes]: Re-
produce the case study crash.
Preparation: Login to the arm64 server (ssh -p 1235
ae@65.108.89.50), start a tmux session with tmux and
then start the container with ./run.sh.
Execution: Run the ./reproduce-tplink.sh script.
Results: The script generates the harness for the vulner-
able function, fuzzes it and then reproduces the crash.
After finishing the script prints the backtrace of the re-
produced and deduplicated crash. It should look similar
to this:
abort
scudo::die
scudo::ScopedErrorReport::~ScopedErrorReport
scudo::reportInvalidChunkState
scudo::Allocator<scudo::AndroidConfig, &scudo_malloc_postinit>::deallocate
mp4_write_one_jpeg
Java_com_tplink_skylight_common_jni_MP4Encoder_packVideo
fuzz_one_input
main

https://github.com/HexHive/droidot.git
https://github.com/HexHive/droidot.git
https://github.com/HexHive/droidot.git
https://github.com/HexHive/droidot.git


The backtrace contains the allocators detection of double
free indicating the detection of the use after free.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


