ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Place Protections at the Right
Place: Targeted Hardening for Cryptographic Code against Spectre v1

Yiming Zhu, Wenchao Huang, Yan Xiong
University of Science and Technology of China

A Artifact Appendix

A.1 Abstract

This appendix provides an overview of each component of the
artifact and describes how to use them to reproduce the results
presented in the paper. We offer a complete artifact package
that includes source code, workloads and documentation.

The artifact consists of five folders: bench, Poc, include,
src, and doc.

The src and include folders contain the source code for
our proposed hardening techniques: LightSLH, LightFence,
and LightCut.

The main directory includes a README . md file that provides
details about key dependencies, instructions for compiling the
code, and a simple guide on how to use it.

The doc folder contains a README . md, including descrip-
tions on how to annotate security properties for the code under
analysis and how to mark entry functions for analysis. Addi-
tionally, it provides two examples to help users understand
how to utilize our tools effectively.

The Poc folder includes a proof-of-concept implementation
of the proposed side channel described in Section 7.2 of the
paper.

Our experimental results can be reproduced by following
the step-by-step instructions provided in the README . md file
located in the bench folder. This file outlines the process for
downloading the required dependencies and workloads (all
of which are open-source).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This tool is a code hardening utility designed to enhance
code security through static analysis. It does not involve any
destructive operations or disable any security mechanisms.
Therefore, evaluators can execute this tool without concerns
regarding the security of their machines, data privacy, or other
ethical issues.

*Corresponding Authors

A.2.2 How to access

The artifact is available at https://doi.org/10.5281/
zenodo.15569395. It can be downloaded as a zip file, which
contains all the necessary files to run the experiments de-
scribed in the paper.

A.2.3 Hardware dependencies

None. However, the proof of concept described in Section 7.2
has been tested only on an Intel Xeon® CPU E5-2680.

A.2.4 Software dependencies

The artifact has been tested on Ubuntu 22.04 systems. To
install our proposed tool (i.e., LightHardening), the following
software dependencies are required:

* GCC and G++ (version 12 or higher), CMake (version
3.25 or higher), Make, and Wget. These depen-
dencies can be installed by running: apt install
gcc-12 g++-12 make wget. Note that the default
Ubuntu apt repository may not include the latest
version of CMake. It is recommended to use the
official installation script for CMake: wget https://
github.com/Kitware/CMake/releases/download/
v3.25.0/cmake-3.25.0-1inux-x86_64.sh,
chmod +x cmake-3.25.0-1linux-x86_64.sh,
and sudo ./cmake-3.25.0-1inux-x86_64.sh
-prefix=/usr/local. You can verify the installation
by running cmake -version.

* LLVM and Clang. Our tool is implemented as an LLVM
IR pass and supports multiple LLVM versions. However,
to reproduce our experimental results, LLVM version
14.0.4 is required. Due to the specific version require-
ment for LLVM and the directory structure expected
by subsequent execution scripts, please refer to the In-
stall LLVM section in bench/README . md for detailed
instructions on installing LLVM 14.0.4. Note that in-
stalling LLVM can be time-intensive, potentially requir-
ing 1-2 hours to complete.

To reproduce our experiments, the following additional
software dependencies are required:

https://doi.org/10.5281/zenodo.15569395
https://doi.org/10.5281/zenodo.15569395

* Python 3, Git. These dependencies can be installed by
running: apt install python3 git python3-pip.

* Dependencies for LLSCT: gperftools, libunwind, ninja,
pkg-config, and Python packages: pandas, seaborn.
These dependencies can be installed by running:
apt install google-perftools libunwind-dev
ninja-build pkg-config and pip3 install
pandas seaborn.

e LLSCT. Please refer to the Install LLSCT section in
bench/README . md for detailed instructions on installing
LLSCT. Note that LLSCT is a tool directly modified
from LLVM, and its installation may require 1-2 hours
to complete.

* Google Benchmark. Please refer to the Install Google
Benchmark section in bench/README . md for detailed
instructions on installing Google Benchmark.

A.2.5 Benchmarks

We use OpenSSL, Libsodium, NaCL, and PQClean as
our workloads. Enter the bench folder and run bash
collect_source_code. sh to prepare these workloads. The
script is pre-configured with the specific versions of the li-
braries used. The downloaded cryptographic source code will
be located in the bench/crypto_code directory.

A.3 Set-up
A.3.1 Installation

To set up the environment, enter to the bench folder of
LightHardening and follow the Build LightHardening part
in bench/README . md for build our tools.

Upon successful execution, the libSpectrePass. so file
will be generated in the build folder. This file represents
the LLVM IR pass that implements the proposed hardening
techniques.

Next, navigate to the bench/wrapper folder and execute
bash compile_wrap.sh. This step prepares the .11 files
required for subsequent analysis.

A.3.2 Basic Test

Navigate to the bench/wrapper folder and execute
the following command: bash compile.sh aes 16
OpenSSL3.3.0 AES.

This command compiles the OpenSSL 3.3.0 AES workload
with all the hardening tools used in our experiments, including
LightSLH, LightFence, LightCut, SSLH, Fence, and LLSCT.

Upon successful execution, the following files will be
generated in the bench/wrapper/OpenSSL3.3.0/aes
folder: aes_test_LightSLH, aes_test_LightFence,
aes_test_LightCut, aes_test_SSLH, aes_test_fence,
aes_test_llsct, and aes_test_origin.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The analysis information of LightSLH, as illustrated
in Figure 6 of the paper.

(C2): The overheads of various protection tools are com-
pared, as shown in Figure 7 of the paper.

(C3): A one-bit side channel is constructed using the assign-
ment within a loop, as described in Section 7.2 of the

paper.

A4.2 Experiments

(E1): Reproduce Cl1. [5 compute-minutes]
Preparation: Ensure all dependencies are installed and
the code is compiled as described in the Set-up section.
Navigate to the bench/wrapper folder.
Execution: Execute the following command: bash
bench.sh compile
Results: The analysis information for each workload,
corresponding to Figure 6 in our paper, including run-
time and processed instruction data, will be saved in
bench/wrapper/compile_information.txt.

(E2): Reproduce C2. [30 compute-minutes]
Preparation: Ensure E1 has been completed success-
fully, and navigate to the bench/wrapper folder.
Execution: Execute the following commands sequen-
tially:
bash bench.sh run
python3 stat_bench.py > performance.txt
Results: The runtime of the code generated by
different defense methods for each workload will
be recorded in wrapper/result.json. Additionally,
wrapper/performance.txt will summarize the over-
head introduced by different defense mechanisms com-
pared to unprotected code. Note: The measurement of
CPU time may vary depending on processor environ-
ment, cache settings, and other factors. As a result, the
obtained results may exhibit slight differences compared
to those presented in Figure 7.

(E3): Reproduce C3. [1 compute-minutes]
Preparation: Navigate to the Poc folder and ensure that
LLVM and Clang are installed.
If you have installed LLVM 14.0.4 as described in
Section A.2.4, you can add the LLVM binary directory
to your PATH by running: export PATH=$ (realpath
../bench/1lvm-project-14.0.4.src/install/bin)
:SPATH. Alternatively, you can use apt install
clang to install a different version of Clang, as this part
of the reproduction does not require a specific Clang
version.
Execution: Follow the instructions in the
Poc/README.md file to run the proof-of-concept
code.

Results: When compiled without forbidden branch pre-
diction, there is approximately an 80% chance of obtain-
ing output consistent with the input when running the
Python script in the Poc folder. In contrast, when com-
piled with forbidden branch prediction, the probability
drops to 50%, which is equivalent to random guessing.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

