
USENIX Security ’25 Artifact Appendix: Vulnerability of Text-Matching
in ML/AI Conference Reviewer Assignments to Collusions

Jhih-Yi (Janet) Hsieh, Aditi Raghunathan, Nihar B. Shah
School of Computer Science, Carnegie Mellon University

jhihyih@alumni.cmu.edu, {aditirag, nihars}@andrew.cmu.edu

A Artifact Appendix

A.1 Abstract

In addition to releasing all adversarial abstracts generated in
this work, our artifacts include the code, datasets, and LLM
prompts necessary for researchers to reproduce the fully auto-
matic mode attack results that support the paper’s main claims.
In this artifact appendix, we describe in detail how each of
our main results can be reproduced and verified.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk for evaluators while executing our artifacts.
However, it is important to remember that any successful
attack pertains to the abstract and/or reviewer profile modified
in this experiment and not to the original abstract or profile
in the conference. Finally, do not use this artifact to produce
adversarial abstracts for your submissions. Safeguards against
this attack are implemented at major AI/ML conferences.

A.2.2 How to access

Our research artifacts are available on Zenodo https://doi.
org/10.5281/zenodo.15588237.

A.2.3 Hardware dependencies

We have tested the reproduction instructions in this docu-
ment on CPU-only devices as well as GPU-enabled. A GPU
can provide substantial speed-ups. The hardware needs to be
compatible with the PyTorch deep learning framework. The
minimal hardware the artifacts have been tested on has an 8
CPU cores with 16 GB RAM, but having more is helpful. If
you do not have GPU access but wish to gain one, we have
tested on and recommend AWS (instance type: g4dn.xlarge,
image: Deep Learning OSS Nvidia Driver AMI GPU PyTorch
2.7 (Ubuntu 22.04)). Your machine should have at least 20
GB of free memory for the datasets, virtual environment, and
models.

A.2.4 Software dependencies

We package our environment using Conda virtual environ-
ments. We recommend installing Miniconda, which is a
minimal installer of Anaconda. Please follow the instruc-
tions on their website: https://www.anaconda.com/docs/
getting-started/miniconda/install.

Our code makes calls to the OpenAI API (paid service), so
an API key with available credits is needed.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

First, download the dataset.zip file from Zenodo (https:
//doi.org/10.5281/zenodo.15588237) and extract the
files locally. There should be a datasets/ directory contain-
ing both NeurIPS 2022 and 2023 datasets. You may rename
the outer directory datasets/, but please keep everything
else the same way.

Now find reviewer_assignments_vulnerability.zip
from the same Zenodo link and extract it somewhere outside
of the datasets directory. This directory contains the code, ad-
versarial abstract examples, LLM prompts, and other scripts.
Change into the reviewer_assignments_vulnerability
directory, and create the virtual environment using the
following:

$ conda env create -f environment.yml

Activate the environment:

$ conda activate attack

Set the OpenAI API key environment variable.

$ export OPENAI_API_KEY=your_key

https://doi.org/10.5281/zenodo.15588237
https://doi.org/10.5281/zenodo.15588237
https://www.anaconda.com/docs/getting-started/miniconda/install
https://www.anaconda.com/docs/getting-started/miniconda/install
https://doi.org/10.5281/zenodo.15588237
https://doi.org/10.5281/zenodo.15588237

A.3.2 Basic Test

The basic test below simulates the proposed collusion
attack between one paper-reviewer evaluation pair. Set
the --datasets_dir flag to the directory path that con-
tains both NeurIPS 2022 and 2023 datasets (for example
"../datasets"). Run the command below from the code
repository. If you have access to a GPU, first test if GPU is
availabe for PyTorch (try torch.cuda.is_available() in
Python console) and then add the flag --device=cuda to the
command below. You must specify the device or it will default
to running on CPU only.

(attack) $ python attack/main.py \
--datasets_dir=path/to/datasets/directory \
--end=1
Optional arguemnt: --device=cuda

After the run successfully finish, you should find an output
directory out/yyyy-mm-dd/hh-mm-ss under the code repos-
itory. It will contain a sub-directory called attack_0, under
which you will find the attack logs and information. Open
attack_info.json and you will find the attack metadata
and results, including the adversarial reviewer archive and the
modified abstract.

To evaluate the run output, you should use the following
script. However, for the basic test, you may see NaN and
errors since there is only one sample (for example, variance
and confidence intervals are meaningless).

(attack) $ python scripts/run_result.py \
--run_dir=out/yyyy-mm-dd/hh-mm-ss

A.4 Evaluation workflow
This section outlines the necessary procedures and experi-
ments required to verify artifact functions and repoducibility
of the major claims in the paper.

A.4.1 Major Claims

Here we enumerate the major claims made in the paper.
(C1): The proposed attack procedure successfully manipu-

lates reviewer assignment. This is proven by experiment
(E1) described in Section 5.3 whose results are reported
in Table 2.

(C2): Policies that require reviewers to have more papers in
their archives can reduce the effectiveness of the pro-
posed attack. This is proven by experiment (E2) de-
scribed in Section 5.4 whose results are illustrated in
Figure 4.

(C3): To combine the similarity scores between a submitted
paper and a reviewer’s multiple papers in their archives,
using average pooling instead of max pooling can help
reduce the impact of targeted manipulations, making the
proposed attack less successful under average pooling.

This is proven by experiment (E3) described in Section
5.5 whose results are reported in Table 4.

(C4): Considering NeurIPS 2022 as a “past” conference
whose data is publicly available to an attacker, and
NeurIPS 2023 as the “current” conference whose data
is unavailable, we find that the attack performance on
NeurIPS 2022 is reflective of the performance in 2023.
This is proven by experiment (E4) described in Section
5.6 whose results are illustrated in Figure 5.

A.4.2 Experiments

For each major claim above, we provide the instructions to
reproduce the experiment in our paper that supports the claim.
The instructions here reproduce these experiments at a smaller
scale in terms of both sample size and the number of scenarios,
but we believe thst they are representative and sufficient to
support the main claims. Due to the stochastic nature of LLM-
generated abstract attacks and the low sample sizes, we do not
expect the result numbers to be exactly the same as reported
in the paper, but we expect them to still support each claim.
(E1): [Attack Success Rates] [20 human-minutes + 3

compute-hour]: run the attack procedure on paper-
reviewer pairs with natural rankings 101 and 1001.
Preparation: Make sure your OpenAI API key has suf-
ficient credit. We estimate about 5 to 10 dollars for this
experiment.
Execution: Use the following command to execute
the attack procedure for 20 samples. You will need
to run this command twice (one after the other
has completed), with different input argument to
--samples_file, for natural rankings of 101 and
1001 (replace the attacks_rank101.jsonl file with
attacks_rank1001.jsonl below). Two runs take
about 3 hours total on CPU and 2 hours on GPU.
(attack) $ python attack/main.py \
--datasets_dir=path/to/datasets/directory \
--samples_file="evaluation_samples/\
attacks_rank101.jsonl" \
--end=20
Optional arguemnt: --device=cuda

Results: Each run (each time attack/main.py is exe-
cuted) will have its own output directory, named by the
timestamp of when the run started. Use the evaluation
script introduced at the end of Appendix A.3.2 to eval-
uate the attack results of each run. Compare the attack
success rates and manipulated rankings statistics with
the first and last rows of Table 2 in Section 5.3. Since
the sample size of 20 here is much lower than in Table
2, higher variance and wider confidence intervals are
expected.

(E2): [Reviewer Archive Length] [15 human-minutes + 4
compute-hour]: run the attack procedure, but reviewers

have to keep 10 papers (instead of 1) in their archives.
Preparation: Make sure your OpenAI API key has suf-
ficient credit. We estimate about 10 dollars for this ex-
periment.
Execution: Use the following command to execute the
attack procedure for 20 samples. This will take about 4
hours total on CPU and about 1.5 hours on GPU.
(attack) $ python attack/main.py \
--datasets_dir=path/to/datasets/directory \
--samples_file="evaluation_samples/\
arclen_attacks_rank101.jsonl" \
--num_papers_to_keep=10 --end=20
Optional arguemnt: --device=cuda

Results: Again, an output directory named by the times-
tamp of when the run started will be produced. Use the
evaluation script introduced at the end of Appendix A.3.2
to evaluate the attack result. Compare with the right-most
data point in Figure 4. You should see that the attack
success rates are low when reviewers keep 10 papers in
their archive.

(E3): [Average vs Max] [30 human-minutes + 6 compute-
hour]: run the attack procedure under average (mean)
versus max pooling methods to combine the similarities
to each of the reviewer’s papers (when reviewers must
keep all their past papers).
Preparation: Make sure your OpenAI API key has suf-
ficient credit. We estimate about 10 dollars for this ex-
periment.
Execution: Use the following command to execute the
attack procedure for 20 samples under max pooling. This
will take about 2 hours total on CPU and about 1 hour
on GPU.
(attack) $ python attack/main.py \

--datasets_dir=path/to/datasets/directory \
--similarity_mode="max" \
--samples_file="evaluation_samples/\
maxsim_attacks_rank101.jsonl" \
--num_papers_to_keep=10 --end=20

Optional arguemnt: --device=cuda

Next, use the following command to execute the attack
procedure for 20 samples under average (mean) pooling.
This will take about 4 hours total on CPU and about 1.5
hours on GPU.
(attack) $ python attack/main.py \
--datasets_dir=path/to/datasets/directory \
--similarity_mode="avg" \
--samples_file="evaluation_samples/\
attacks_rank101.jsonl" \
--num_papers_to_keep=10 --end=20
Optional arguemnt: --device=cuda

Results: Each run (each time attack/main.py is exe-

cuted) will have its own output directory, named by the
timestamp of when the run started. Use the evaluation
script introduced at the end of Appendix A.3.2 to eval-
uate the attack results of each run. Compare with the
two rows of Table 4 in Section 5.5. Since the sample
size of 20 here is much lower than in Table 4, higher
variance and wider confidence intervals are expected. If
the results do not show a convincing difference between
average and max pooling, we recommend increasing the
sample size to 40 for both mean and max scenarios. You
can do so by setting the arguments --start=20 and
--end=40. In the new run output folders, you will find
subdirectories attack_i/ for i = 20...39. To evaluate
all 40 samples, you can move those subdirectories into
the same run folder as the first 20 samples and run the
evaluation script described at the end of Appendix A.3.2
with the run directory that contains all 40 subdirectories.

(E4): [Correlation] [10 human-minutes + 0 compute-hour]:
calculate the correlation of manipulated rankings
amongst NeurIPS 2022 and 2023 reviewers.
Preparation: You must complete (E1) before this ex-
periment.
Execution: Use the following command to calculate
the Spearman’s rank correlation coefficients between
manipulated rankings in NeurIPS 2022 and 2023. Run
the follow command twice, setting --run_dir to the
output directories for natural rankings 101 and 1001 runs
from (E1).
(attack) $ python scripts/run_result.py \
--run_dir "out/yyyy-mm-dd/hh-mm-ss" \
--correlation
Results: The correlation should be high. Compare with
the Spearman’s rank correlation coefficients reported in
Figure 5 of the paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

