
USENIX Security ’25 Artifact Appendix: VAPD: An Anomaly Detection Model for
PDF Malware Forensics with Adversarial Robustness

Side Liu
Wuhan University

Jiang Ming
Tulane University

Yilin Zhou
Wuhan University

Jianming Fu
Wuhan University

Guojun Peng
Wuhan University

A Artifact Appendix

A.1 Abstract

In this work, we propose VAPD, a reconstruction-based
anomaly detection model designed with dual forensic ob-
jectives: (1) identifying PDF malware through reconstruction
errors between the input and output, and (2) localizing anoma-
lous regions within the document. We evaluate VAPD on
multiple datasets, samples, achieving an accuracy of 99.54%,
outperforming existing anomaly detection methods. Further-
more, we assess the robustness of VAPD using four adver-
sarial attack frameworks in both feature space and problem
space, demonstrating its strong resilience against adversarial
manipulations.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact does not involve steps such as vulnerability re-
production and malicious code execution. All data has been
processed, and there will be no risks to computer security and
privacy.

A.2.2 How to access

The evaluation preprocessed datasets and code used in this
artifact are available at https://zenodo.org/records/1
5603773 and https://zenodo.org/records/16732430.
This artifact can be accessed publicly.

A.2.3 Hardware dependencies

1. At least 250 GB of available disk space;

2. At least 32 GB of RAM;

3. A GPU of 1080 Ti or higher is recommended, with more
than 11 GB of VRAM (Optional).

A.2.4 Software dependencies

1. Python 3.10 or higher;

2. CUDA 11.8 or higher (Optional);

3. Other Python package dependencies and versions can be
found in requirements.txt.

A.2.5 Benchmarks

1. Contagio Baseline Dataset;

2. Baseline models such as RTM, KNN, and DeepSVDD
have been placed in the artifact.

A.3 Set-up
A.3.1 Installation

Running the artifact requires installing Python, along with
the corresponding Python packages and a compatible CUDA
version (CUDA is optional — required for training, but GPU
and CUDA may not be necessary for inference/testing).
Python First, please download Python 3.10 or a later version
from the official Python website: Python 3.10.17.
Python Package Dependencies) We recommend using Vir-
tualenv to create a virtual environment. First, install Virtualenv
by running:

> pip3 install virtualenv

Then, create a virtual environment:

> virtualenv venv

Activate the virtual environment:

> source venv/bin/activate

Finally, install the required packages provided in https:
//zenodo.org/records/16732430:

> pip3 install −r requirements.txt

https://zenodo.org/records/15603773
https://zenodo.org/records/15603773
https://zenodo.org/records/16732430
https://www.python.org/downloads/release/python-31017/
https://zenodo.org/records/16732430
https://zenodo.org/records/16732430

CUDA (Optional) If a GPU is available, you may optionally
install the CUDA Toolkit from https://developer.nvid
ia.com/cuda-toolkit to enable GPU acceleration during
training, which can significantly speed up the process.

If no GPU is available, the artifact can still be run using
the CPU for testing or inference purposes.

A.3.2 Basic Test

Navigate to the vapd_src directory first, and execute test.py
like the following:

> python test.py

And, it will ouput:
usage: test.py [-h] -dataset DATASET -label

LABEL -model MODEL -model_path MODEL_PATH

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): VAPD demonstrates outstanding classification perfor-
mance across multiple PDF datasets (E1).

(C2): VAPD exhibits strong adversarial robustness against var-
ious adversarial attack settings (E2).

(C3): VAPD is capable of localizing anomalous objects within
PDF files. (E3).

A.4.2 Experiments

The experiments are divided into three parts:

(E1): Detection on D1, D2, and D3.

(E2): Adversarial experiments against adversarial attacks.

(E3): Localization experiments within PDF.

E1. Detection on baseline and extended dataset
[5 human-minutes + 5 compute-minutes]

Navigate to the vapd_src directory:

> cd vapd_src

The evaluation script is test.py, and the usage of test.py is
as follows:
usage: test.py [-h] -dataset DATASET -label

LABEL -model MODEL -model_path MODEL_PATH

• -dataset: the path to the preprocessed dataset file

• -label: lable file

• -model: the model to be evaluated, VAPD | KNN | AE |
DeepSVDD | RTM

Please run the following command to evaluate VAPD on
the D1 dataset and it will output the result on console:

> python test.py −−dataset ./data/D1_test.npy −−label
./data/D1_label.npy −−model VAPD −−model_path
./models/vapd_weights.pkl

As for D2, please run the following command:

> python test.py −−dataset ./data/D2_test.npy −−label
./data/D2_label.npy −−model VAPD −−model_path
./models/vapd_weights.pkl

As for D3, please run the following command:

> python test.py −−dataset ./data/D3_test.npy −−label
./data/D3_label.npy −−model VAPD −−model_path
./models/vapd_weights.pkl

E2. Adversarial experiments against adversarial attacks.
[2 human-minutes + 60 compute-minutes]

For the gradient descent attack, first navigate to the adver-
sarial attack directory:

> cd adversarial\ attack/

Then simply run GradAttack.py as following:

> python GradAttack.py

This script will print the process in the console and generate
a CSV file to save the final results.

For MalGAN, first navigate to the malgan directory

> cd adversarial\ attack/malgan

Then run the following command. The console will display
the progress, and a figure will be generated at the end as the
result.

> python cus_malgan.py

Since the evaluation of EvadeML and reverse mimicry in-
volves setting up a distributed Cuckoo sandbox cluster, we
are currently unable to provide ready-to-run containers or
virtual machines. Moreover, the dynamic verification process
is extremely time-consuming, with a full run potentially tak-
ing over four weeks. Therefore, we have only implemented
adversarial evaluations in the feature space, which are much
easier to run and reproduce.
E3. Localization experiments within PDF
[5 human-minutes + 5 compute-minutes]

We have prepared a subset of approximately 100 samples
from the test set for evaluating localization. To use it, run
the following command. The value after –index should be
an integer between 0 and 100. After execution, the top-5
localization results will be printed to the console.

> python locate.py −−index 12

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

