
USENIX Security ’25 Artifact Appendix: <Ares: Comprehensive Path
Hijacking Detection via Routing Tree>

Yinxiang Tao1*, Chengwan Zhang*, Changqing An1,
Shuying Zhuang2†, Jilong Wang3,1, and Congcong Miao4†

1Institute of Network Sciences and Cyberspace, Tsinghua University, Beijing, China
2Zhongguancun Laboratory, Beijing, China

3Quan Cheng Laboratory, 250103, Jinan, Shandong, China
4Tencent

tyx23@mails.tsinghua.edu.cn, x10000zhang@gmail.com,
{acq,wjl}@cernet.edu.cn, zhuangsy@mail.zgclab.edu.cn, mccmiao@163.com

A Artifact Appendix

A.1 Abstract
In the Artifacts, we have included all the source code men-
tioned in the Open-Science section, specifically the complete
source code of our proposed path hijacking detection ap-
proach Ares. All the data used in our experiments were ob-
tained from publicly available datasets, and we have described
how to access these data in Ares’ README documentation.
Additionally, we have shared the raw data necessary to repro-
duce the results presented in our paper.

Furthermore, we have included the source code of three
other methods in the shared link, as we compared Ares’ perfor-
mance against these approaches in the paper. The README
document outlines how we obtained the source code for these
three methods. To ensure these methods can be fairly com-
pared with Ares on our datasets, we made certain modifi-
cations and additions to their source code. Detailed usage
instructions are provided in the README files within each
method’s respective folder in the shared repository.

A.2 Description & Requirements
Since our artifacts include not only the source code of Ares
but also the code for three other methods (Metis, DFOH, and
BEAM), we will separately specify the dependencies required
for each of the four approaches.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy and ethical concerns for evalua-
tors while executing our artifact. All raw data used in experi-
ments are publicly available. Our use of these data does not
raise any security, privacy and ethical concerns. Additionally,

the open-source code we have published is either obtainable
from other public sources or has obtained consent from the
original code creators.

A.2.2 How to access

The source code used in our experiments – including Ares
and the methods compared with Ares – along with the raw
experimental data, is publicly available at https://doi.or
g/10.5281/zenodo.15589806.

A.2.3 Hardware dependencies

Our experiment was conducted on a server with Intel(R)
Xeon(R) Gold 5218R CPU@2.10GHz which has 80 cores.

To successfully run Ares, you will need a server with suffi-
cient memory (better over 100GB, our experimental machine
was equipped with 251GB RAM). Furthermore, to properly
compare Ares with the other three approaches, you will need
a GPU-equipped server with cuda for running models, as all
three methods involve machine learning components. More-
over, you will need over 166GB disk space to store DFOH’s
database.

A.2.4 Software dependencies

Our experiment was conducted on a server running Ubuntu
20.04.1 LTS and Python 3.9.13.
Ares. To successfully run Ares, you need to install the de-
pendencies listed in the README document, which include:
Python dependencies specified in requirements.txt, The bg-
pdump toolkit, The BGPStream framework. The README
provides direct links to installation instructions for these com-
ponents. Additionally, to mitigate potential dependency con-
flicts (e.g., from pre-existing packages in the server environ-

https://doi.org/10.5281/zenodo.15589806
https://doi.org/10.5281/zenodo.15589806


ment prior to experimentation), we provide a requirements-
full.txt file containing all explicitly tested package versions.
Metis. To compare Metis with Ares, you need to install
Python dependencies listed in requirements file in its folder.
BEAM. To compare BEAM with Ares, you need to follow
the instructions listed in its original readme document at
’BEAM/readme.md’ to install dependencies.
DFOH. To compare DFOH with Ares, you will need to install
Docker and Python dependencies. Instructions are included
in DFOH’s original readme document at DFOH/dfoh_runn
er/README.md.

A.2.5 Benchmarks

Ares. The data required by Ares in the experiments with this
artifact are already documented in the ’Data’ folder.
Metis. The data and model required by Metis in the experi-
ments with this artifact are already documented in the ’Metis’
folder and some of its sub-folders.
BEAM. The data and model required by Metis in the ex-
periments with this artifact are already documented in the
’BEAM’ folder and some of its sub-folders.
DFOH. The database required by DFOH in the experiments
with this artifact can be obtained at https://dfoh.uclouva
in.be/database.

A.3 Set-up

A.3.1 Installation

In the beginning, download all files at https://doi.org/10
.5281/zenodo.15589806 and decompress all compressed
files. You should receive a READ document along with five
folders: Ares, Metis, DFOH, BEAM, and Data.
Ares. Instructions are included in readme document at Ares
/README.md. To install dependencies, follow the instructions
bellow:
1. Install bgpdump tool following instructions at https://gi
thub.com/RIPE-NCC/bgpdump/wiki. Note to add this tool
to the system PATH.
2. Install libBGPStream following instructions at https:
//bgpstream.caida.org/docs/install/bgpstream.
3. Install Python dependencies using pip install -r
requirements.txt.

This should lead you to run Ares. If there are any missing
dependencies, you could supplement it or check requiremen
ts-full.txt.
Metis. Instructions are included in readme document at Me
tis/README.md. Install Python dependencies using pip
install -r requirements.
BEAM. Original instructions are included in readme doc-
ument at BEAM/readme.md and our instructions are at
BEAM/README.md. Follow the original instructions to in-
stall dependencies. Note that if you want to use the model

we provide and do not want to train one yourself, you do not
need to create a virtual environment for BEAM.
DFOH. Original instructions are included in readme doc-
ument at DFOH/dfoh_runner/README.md and our instruc-
tions are at DFOH/README.md. To install dependencies, follow
the instructions bellow:
1. Install docker using installation guide at https://docs.d
ocker.com/engine/install/ubuntu/.
2. Install Python dependencies using pip install -r
requirements.txt at DFOH/dfoh_runner/main.
3. Download DFOH’s database at https://dfoh.uclou
vain.be/database and store it in DFOH/DFOH_db. For
DFOH, the original data acquisition method described in its
documentation may no longer be functional. As an alterna-
tive, you may need to implement a web crawler to retrieve
this database. While we provide our original crawler script
(download_db.py), please note that the script requires mod-
ifications to properly download subdirectory contents from
the target database.
4. Pull docker images or build it yourself. The DFOH imple-
mentation includes functionality for pulling Docker images
automatically, but to circumvent potential deployment obsta-
cles, we recommend manually building the Docker images
using DFOH’s provided scripts. Specifically, you should run
bash build_and_upload.sh at each directory except
dfoh_runner (Bypass the login step so the script only builds
the images without attempting to upload them).

A.3.2 Basic Test

After completing the installation, perform basic testing for
each method using the following procedures.
Ares. Run python3 main_simulation.py 4 2 and
python3 main_his.py 7 03 97 50 at Ares folder
to check whether Ares can successfully function. If output
files are generated in Ares/running_log and Ares/simre
sults, it means Ares is functioning fine.
Metis. Run python3 predict.py 4 2 at Metis/simu
lation to check whether Metis can successfully function. If
output are generated in files in Metis/simulation/resul
ts, it means Metis is functioning fine.
BEAM. Run python3 run_on_dataset.py 4 2 at
’BEAM’ folder to check whether BEAM can successfully
function. If output are generated in files in BEAM/simulat
ion and BEAM/simulation_results, it means BEAM is
functioning fine.
DFOH. Run python3 run_on_dataset.py 4 2 at
DFOH/dfoh_runner/main to check whether DFOH can
successfully function. If output are generated in files in DF
OH/simulation and DFOH/simulation_results, it means
DFOH is functioning fine.

https://dfoh.uclouvain.be/database
https://dfoh.uclouvain.be/database
https://doi.org/10.5281/zenodo.15589806
https://doi.org/10.5281/zenodo.15589806
https://github.com/RIPE-NCC/bgpdump/wiki
https://github.com/RIPE-NCC/bgpdump/wiki
https://bgpstream.caida.org/docs/install/bgpstream
https://bgpstream.caida.org/docs/install/bgpstream
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://dfoh.uclouvain.be/database
https://dfoh.uclouvain.be/database


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Ares is effective against reported historical hijacking
events and produces a few number of alarms. This is
proven by E1 described in Section 5.1 whose results are
illustrated/reported in Table 4.

(C2): Ares has better recall rate on our simulated hijacking
event dataset than existing state-of-the-art methods. This
is proven by E2 described in Section 5.2 whose results
are illustrated/reported in Table 5-6, 11-16.

(C3): Ares comparable false positive rate with existing state-
of-the-art methods on our sampled normal route change
dataset. This is proven by E3 described in Section 5.2
whose results are illustrated/reported in Table 7.

(C4): Ares has lower runtime overhead than existing state-
of-the-art methods. This is proven by E4 described in
Section 5.3 whose results are illustrated/reported in Ta-
ble 8.

A.4.2 Experiments

(E1): [20 human-minutes + 3+ compute-hour + 60GB mem-
ory]: Apply Ares to 12 collected historical events and
find that it can successfully detect all events with a few
number of alarms.
Preparation: Correctly obtain and position the Data
folder contents from the provided artifact.
Execution: Run python3 run_his_script.py
<start_index> <end_index> at Ares folder

to detect each historical event using our used settings
one by one.
Results: Results are stored at Ares/running_log.
Run python3 check_alerts.py to obtain results
presented in Table 4. The outcomes are expected to
closely approximate the results reported in the paper.

(E2): [1 human-hour + 20-30 compute-hour if parallel exe-
cuted (hundreds of compute-hour if not)]: Apply Ares
as well as Metis, BEAM and DFOH to our simulated
hijacking events to compare their recall rate.
Preparation: Correctly obtain and position the Data
folder contents from the provided artifact. Ensure the
dependencies for each method are installed and all of
them can function.
Execution: Run all commands in run_simulationde
tect.sh at Ares, run_on_dataset.sh at BEAM and
DFOH/dfoh_runner/main, run_predict.sh at Meti
s/simulation respectively to perform the detection on
simulated events (If your CPU has sufficient multi-core
capabilities, you may attempt parallel execution of these
commands to significantly reduce processing time).
Results: Run python3 check_dataset.py for
each methods to get recall rate results. Note that due
to involving machine learning, the results of Metis and

DFOH may have slight differences when executed re-
peatedly. The outcomes are expected to show that Ares
has better recall rate than other methods.

(E3): [20 human-minute + 1-2 compute-hour]: Apply Ares
as well as Metis, BEAM and DFOH to sampled normal
route changes to compare their false positive rate.
Preparation: Correctly obtain and position the Data
folder contents from the provided artifact. Ensure the
dependencies for each method are installed and all of
them can function.
Execution: Run python3 main_normal.py >
running_log/detect_normal.txt at A r es,
python3 run_on_normal.py at BEAM, DFOH/dfo
h_runner/main, and Metis/simulation respectively
to perform the detection on normal changes.
Results: Run python3 check_normal.py for
Ares and manually inspect results for other three meth-
ods to compare their false positive rate. Note that BEAM
had two results for two different thresholds (details see
Section 5.2). The outcomes are expected to show that all
methods have comparable false positive rate.

(E4): [20 human-minute + 5-6 compute-hour]: Apply Ares
as well as Metis, BEAM and DFOH to a same amount
of BGP updates to compare their efficiency.
Preparation: Correctly obtain and position the Data
folder contents from the provided artifact. Ensure the
dependencies for each method are installed and all of
them can function. Run getUpdate.py at Data/upd
ateData to obtain BGP updates.
Execution: Run python3 eff_test.py

at A r es, python3 routing_monitor/
detect_route_change_riperis.py
--collector rrc03 --year 2024 --
month 10 at B E AM, python3 my_run_daily
.py --date 2024-10-01 --date_end
2024-10-02 --db_dir <absolute path
of DFOH_db> at DFOH/dfoh_runner/main,

python3 eff.py at Metis/simulation respec-
tively to perform the comparison.
Results: Run python3 eff_check.py for Ares,
Metis, BEAM and manually inspect results for DFOH to
compare their runtime overhead (DFOH does not detect
update by update, therefore only can be counted in total).
The outcomes could vary due to running devices, but
Ares’ runtime overhead is expected to be lower than the
other methods.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


