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A Artifact Appendix

A.1 Abstract
This artifact accompanies the USENIX paper ”TwinBreak:
Jailbreaking LLM Security Alignments with Twin Prompts”.
It delivers a complete, reproducible implementation for re-
moving safety alignments from downloaded large language
models (LLMs), such as open-source models on Hugging
Face, while safeguarding their utility. As the basis for Twin-
Break, this artifact also contains the TwinPrompt dataset, a
collection of one hundred prompt pairs with one harmful
and one harmless prompt that yield high structural and con-
tent similarity. Feeding these prompts through a target model,
TwinBreak traces intermediate activations to rank each param-
eter by its contribution to safety enforcement. Feeding two
harmless prompts allows one to identify parameters manda-
tory for utility. Parameters deemed critical to safety are pruned
at inference time unless they also prove indispensable for
utility, thereby disabling safety alignment without degrading
utility. The artifact bundles the TwinBreak source code, the
TwinPrompt dataset, and scripts needed to reproduce exper-
iments that demonstrate successful alignment removal and
consequent jailbreaks on recent LLMs.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing this artifact poses no risk.

A.2.2 How to access

The artifact can be accessed via GitHub and Zenodo.

• GitHub: https://github.com/tkr-research/twinbreak

• Zenodo: https://doi.org/10.5281/zenodo.15591819

A.2.3 Hardware dependencies

The experiments in this artifact run reliably on Unix-based
servers equipped with a sufficiently powerful NVIDIA GPU
with at least 48 GB of memory. More powerful GPUs and
greater memory capacities will lead to faster runtimes. In

addition, approximately 120 GB of disk space is required for
downloading large language models (LLMs) from Hugging
Face. The codebase and experimental outputs occupy roughly
100 MB. We also recommend using a Conda environment
for managing dependencies, which consumes around 7 GB of
disk space.
Minimum System Requirements:

• NVIDIA GPU with at least 48 GB of memory

• 130 GB of available disk space

Hint 1. Reproducing the full experimental suite from the pa-
per, including models with up to 70 billion parameters, de-
mands significantly more resources, both GPU memory and
disk space. For reference, our experimental setup used an In-
tel Xeon Gold 6526Y CPU (16 cores, 64 threads), 256 GB
of RAM, four NVIDIA L40S GPUs (each with 48 GB of
GDDR6 memory), and a 7 TB HDD. Configurations for these
large-scale experiments are included for completeness but
are not part of the prepared demonstration for this artifact,
focusing on TwinBreak’s core functionality. Users may select
the respective model architectures in the configuration file to
execute them, but can safely skip them for this artifact.
Hint 2. The most memory-intensive aspect of the artifact is the
generation of LLM responses during utility and safety eval-
uations, not the TwinBreak attack itself. By default, a batch
size of 20 is used for inference during benchmark executions.
To reduce runtime, this can be increased up to 100, provided
sufficient GPU memory is available. If the available GPU
memory is less than 48 GB, the batch size may need to be
reduced to fit the model, though this will come at the cost of
longer runtimes.

A.2.4 Software dependencies

The experiments are designed to run on a Unix-based oper-
ating system, such as Debian, which serves as our reference
platform. The environment requires Python 3.10 and PyTorch
2.7.0, with CUDA-enabled access to NVIDIA GPUs. While
we recommend using CUDA 12.6, we also provide instruc-
tions for alternative CUDA versions.
We suggest using Miniconda to create an isolated Conda
environment, which simplifies setup and ensures proper de-
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pendency management. All required packages can be installed
via the pip package manager.
Required Python Packages:

• torch 2.7.0

• transformers 4.44.2

• lm_eval 0.4.7

• StrongREJECT

• python-dotenv 0.9.9

• pyyaml 6.0.2

Hint. We provide specific package versions to ensure a
smooth and consistent reproduction process. In particular,
newer versions of transformers may lead to issues re-
lated to torch._dynamo, which attempts to compile Python
model code into a single optimized computation graph. If the
model’s code involves frequent changes in shape, type, or con-
trol flow, such as from dynamic forward() logic or the use of
hooks, Dynamo may recompile the graph repeatedly, eventu-
ally reaching the default limit of 8 recompilations. This issue
arises due to the pruning implementation, which relies on
forward hooks. While it is possible to circumvent the problem
by disabling TorchDynamo Just-In-Time (JIT) Compilation
using the TORCHDYNAMO_DISABLE=1 environment flag, doing
so can significantly increase execution time. Therefore, we
recommend using the package versions and settings specified
in the paper.
Hugging Face Access. To download the required LLMs from
Hugging Face, users must have a Hugging Face account that
has accepted the respective model license agreements. An
access token associated with this account is necessary and
must be used within the project to authenticate and enable
model downloads.
The following models, used in the core experiments of this
artifact, require license agreement on the respective Hugging
Face website and subsequent access token authorization:

• https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

• https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

• https://huggingface.co/google/gemma-2-9b-it

• https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

• https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

• https://huggingface.co/Qwen/Qwen2.
5-3B-Instruct

• https://huggingface.co/meta-llama/
Llama-Guard-3-8B

• https://huggingface.co/google/gemma-2b

Executing experiments with additional models may require
accepting further license agreements.

A.2.5 Benchmarks

The artifact contains three dataset categories: one for mea-
suring utility, another for assessing safety alignment, and the
newly introduced TwinPrompt dataset used during the Twin-
Break attack.
Utility Datasets. The artifact uses five dataset to utility anal-
ysis. All datasets can be easily downloaded and are open-
source. The five datasets are: 1) OpenBookQA, which tests an
LLM’s reasoning and knowledge absorption capability with
a focus on preliminary scientific topics. 2) ARC-Challenge
that targets more complex science questions. 3) HellaSwag
which asks the LLM to choose the most plausible continuation
scenario given a partial sentence or scenario. 4) RTE, which
evaluates with whether a hypothesis can be inferred from a
premise. 5) WinoGrande evaluates an LLM’s common sense
and contextual understanding. The datasets are downloaded
and used on the fly via the lm_eval Python package.
Safety Alignment Datasets. The artifact uses four datasets
comprising harmful prompts to assess LLMs’ security and re-
silience against potential misuse. These prompts are designed
to mimic malicious interactions. All datasets are open-source
and are already part of the repository formatted as JSON files.
The four datasets and respective links to the original dataset
files are: 1) AdvBench, which contains 520 harmful prompts.
2) HarmBench, an improved version of AdvBench with 400
harmful prompts. Following related work (as discussed in the
paper), we only use 200 prompts from HarmBench. 3) Jail-
breakbench, which contains 100 pairs of harmful and harmless
prompts. However, the pairs are not twins as in our dataset. 4)
StrongREJECT, which contains 313 harmful prompts trying
to address shortcomings of the previous datasets.
New TwinPrompt Dataset. Finally, this artifact publishes
the new dataset, TwinPrompt, which consists of one hundred
prompt pairs with one harmful and one harmless prompt that
yield high structural and content similarity. The dataset is also
part of this repository and in JSON format and can be found
under twinbreak/dataset/json/twinprompt.json.

A.3 Set-up
A.3.1 Installation

It is assumed that the setup begins with a newly created user
account on a Unix-based server, such as a Debian system.
To ensure reproducibility and consistent package manage-
ment, we use Miniconda to manage the Python environment.

https://pip.pypa.io/en/stable/
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While it is possible to install the dependencies globally with-
out Miniconda, we recommend using Miniconda as described
below. If Miniconda is skipped, users must manually install
Python 3.10 and ensure all dependencies are correctly re-
solved.
Hint: When copying multi-line commands from the PDF, we
recommend first pasting them into a plain text editor (e.g.,
Notepad) to remove any unintended line breaks before exe-
cuting them in the terminal. The symbol ↪→ indicates that
the command continues on the next line without any added
space; it is used solely for formatting purposes due to line
length constraints in the PDF layout. Alternatively, the com-
mands can be copied from the README file in the GitHub
repository.
Hugging Face Token: If you already have access to a Hug-
ging Face access token with read permissions, you can use
it directly. Otherwise, follow the steps below to create your
own token:

1. Create an Hugging Face account. Such an account can
be created for free.

2. To generate an access token, visit
https://huggingface.co/settings/tokens, click ”Cre-
ate new token”, select the ”Read” token type, and assign
a name to the token. Once created, copy the token for
later use.

3. To get access to the models, please follow the license
agreement instructions provided on the Hugging Face
links provided under Section A.2.4. After confirming the
agreements, it may take up to an hour for your access
status to change from “pending” to “accepted.”

Miniconda Installation: If Miniconda is not already in-
stalled on the server, follow the steps below to install Mini-
conda.

1. Download the Miniconda installer:

wget https://repo.anaconda.com/miniconda/Miniconda3-
↪→ latest-Linux-x86_64.sh

2. Run the installer:

bash Miniconda3-latest-Linux-x86_64.sh

During installation, follow these steps:

• Press ENTER to view the license terms.

• Press SPACE to scroll to the end of the license
terms.

• Type yes to accept the license agreement.

• Press ENTER to confirm the default location for
conda environments.

• Type yes to enable automatic activation of conda
on shell startup.

Afterward, restart your shell, such that conda is activated.
The shell should look like this showing that the base
conda environment is activated:

(base) user@server:/home/user$

Environment Setup

1. Create and activate the Conda environment:

conda create --name twinbreak python=3.10

During the installation process enter y to install the new
packages.

conda activate twinbreak

Afterward, your shell should look like this, showing that
the new twinbreak environment is activated:

(twinbreak) user@server:/home/user$

2. Identify your CUDA version (if applicable):

nvidia-smi

The CUDA version appears in the top-right corner of the
table output.

3. Install PyTorch corresponding to your CUDA version:

• For CUDA 11.8:

pip install torch --index-url https://download.
↪→ pytorch.org/whl/cu118

• For CUDA 12.6 (default if compatible):

pip install torch

• For CUDA 12.8 or later:

pip install torch --index-url https://download.
↪→ pytorch.org/whl/cu128

If you have a different CUDA version, you should try
out the next smaller PyTorch version.

4. Install the remaining dependencies:

pip install transformers==4.44.2
pip install lm_eval==0.4.7
pip install git+https://github.com/dsbowen/

↪→ strong_reject.
↪→ git@e286f0da86d92c929a6fda20a9992f28c5969044

pip install dotenv==0.9.9
pip install pyyaml==6.0.2

https://github.com/tkr-research/twinbreak
https://github.com/tkr-research/twinbreak
https://huggingface.co/
https://huggingface.co/settings/tokens
https://www.anaconda.com/docs/getting-started/miniconda/main


Artifact Retrieval and Initialization

1. Navigate to the desired directory where the project
should be stored and clone the repository:

git clone https://github.com/tkr-research/twinbreak.
↪→ git

2. Enter the project root:

cd twinbreak

3. Run the setup script, providing your Hugging
Face access token and the model storage path.
Therefore, replace <HUGGING_FACE_TOKEN>
and <STORE_MODEL_DISK_PATH> with the
real values, e.g., hf_xxxYOURTOKENxxx and
\home\user\.cache\huggingface. Note, that
the terminal user needs read and write permissions to
the selected directory. The two values will be saved
in a .env file and used to set necessary environment
variables. Additionally, the script will configure the
project root as part of the Python path.

source setup.sh --hf-token <HUGGING_FACE_TOKEN> --
↪→ store-model-disk-path <STORE_MODEL_DISK_PATH>

The terminal should output the following:

.env file created and values injected:
- HF_TOKEN
- STORE_MODEL_DISK_PATH

PYTHONPATH set to /home/user/twinbreak

A.3.2 Basic Test

To run a simple functionality test, execute the following com-
mands.

1. Navigate to the experiments directory:

cd experiments

2. Execute the test script to verify the setup:

python experiment_test.py

3. If successful, the following message will be displayed:

The system is set up to run experiments!

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): TwinBreak effectively removes safety alignment from
open-source large language models (LLMs) with min-
imal impact on their utility, as demonstrated on the
LLaMA 2 (7B) model. This is proven by experiment
(E1) in this artifact, which is also reported in Section
4.2 of the paper, with results reported in the first rows
of Tables 2–5 for safety alignment removal, and Tables
15–19 for utility preservation.

(C2): TwinBreak demonstrates effectiveness across diverse
model architectures and vendors, as shown on Llama
3.1 (8B), Gemma 2 (9B), and Qwen 2.5 (7B). This is
proven by experiment (E2) in this artifact, which is also
reported in Section 4.2 of the paper, with results reported
in the remaining rows of Tables 2–5 for safety alignment
removal, and Tables 15–19 for utility preservation.

(C3): TwinBreak also proves effective across varying model
sizes, as demonstrated on the larger LLaMA 2 (13B) and
the smaller Qwen 2.5 (3B). This is proven by experiment
(E3) in this artifact, which is also reported in Section 4.6
of the paper, with results reported in rows two and six of
Table 8.

A.4.2 Experiments

Hint 1. The reported experiment runtimes were obtained using
a single NVIDIA L40s GPU with 48 GB of memory. Actual
runtimes may vary depending on the number of GPUs, GPU
model, and available memory. By default, the provided code
will automatically utilize all available GPUs on the server.

Hint 2. If you wish to restrict execution to a specific subset
of GPUs, you will need to modify the command used to run
the Python scripts. For example, to use only the GPUs with
indices 1 and 2, the command would be:

CUDA_VISIBLE_DEVICES=1,2 python experiment_test.py

Hint 3.Given the potentially long runtime of the experiments,
we recommend using the screen tool to prevent interruptions
in case the connection to the server is lost. This helps ensure
that experiments continue running even if the terminal ses-
sion is disconnected. For usage instructions, please refer to
the screen manual page. However, this step is optional for
executing the artifact.

Below, three experiments are described, each proving one
major claim of this project.

(E1): [General Functionality] [1 human-minute + 2 compute-
hour + 35GB disk]: In this experiment, we attack the
LLaMA 2 (7B) model with TwinBreak and evaluate the
jailbreak success as well as the utility with all bench-
marks. The results prove the major claim (C1).

https://wiki.ubuntuusers.de/Screen/


Preparation: Follow all instructions under Sec-
tion A.3. The terminal should reside in the
twinbreak\experiments folder.
Execution: Execute the script for the first experiment.

python experiment_1.py

Results: The experiment logs its results both
to the terminal and to a log file located at
twinbreak\results\experiment_1\log\log0.txt.
At the end of the output, a summary of the results is
presented in two tables. The first table reports the utility
benchmark results and corresponds to the first rows of
Tables 15–19 in the paper. The second table presents
the safety benchmark results and can be compared to
the first rows of Tables 2–5. For clarity, the relevant
reference table from the paper is also indicated alongside
each output table in the terminal.
We expect the reported values to fall within a 1–5% range
of those published in the paper. Additionally, the runtime
of the attack is displayed beneath the tables and can be
compared to the values in Table 7. Note that runtime
is highly dependent on hardware. For example, while
the paper reports a runtime of 162 seconds, our server
achieved significantly faster results (16 seconds), as the
experiment was run on Kaggle.

(E2): [Model Architecture Independence] [3 human-minute
+ 7 compute-hour + 114GB disk]: In this experiment,
we repeat experiment (E1) with different model archi-
tectures from different vendors, namely Llama 3.1 (8B),
Gemma 2 (9B), and Qwen 2.5 (7B). The results prove
the major claim (C2).
Preparation: Follow all instructions under Sec-
tion A.3. The terminal should reside in the
twinbreak\experiments folder.
Execution: We provide one script for each of the mod-
els. Execute the scripts individually. To execute Twin-
Break for Qwen 2.5 (7b), execute the following com-
mand. [1 human-minute + 2 compute-hour + 37GB disk]

python experiment_2_1.py

To execute TwinBreak for Gemma 2 (9b), execute the
following command. [1 human-minute + 3 compute-
hour + 40GB disk]

python experiment_2_2.py

To execute TwinBreak for LLaMA 3.1 (8b), execute the
following command. [1 human-minute + 2 compute-
hour + 37GB disk]

python experiment_2_3.py

Results: As with experiment (E1), each script gen-
erates terminal output and corresponding log files
stored in the appropriate results folder, for example,
twinbreak\results\experiment_2_1\log\log0.txt

for experiment_2_1.py. The output can be compared
to the utility and safety benchmarks in Tables 15–19
and Tables 2–5, respectively. As before, we expect the
reported values to be within a 1–5% range of those
presented in the paper.

(E3): [Model Size Independence] [2 human-minute + 4
compute-hour + 75GB disk]: In this experiment we at-
tack models with different model sizes, namely LLaMA
2 (13b) and Qwen 2.5 (3b), using TwinBreak. We eval-
uate the jailbreak success with the newest benchmark
(StrongREJECT) and the utility with HellaSwag. The
results prove the major claim (C3).
Preparation: Follow all instructions under Sec-
tion A.3. The terminal should reside in the
twinbreak\experiments folder.
Execution: We provide one script for each of the mod-
els. Execute the scripts individually. To execute Twin-
Break for LLaMA 2 (13b), execute the following com-
mand. [1 human-minute + 3 compute-hour + 47GB disk]

python experiment_3_1.py

To execute TwinBreak for Qwen 2.5 (3b), execute the
following command. [1 human-minute + 1 compute-
hour + 28GB disk]

python experiment_3_2.py

Results: As with experiment (E1), each script gen-
erates terminal output and corresponding log files
stored in the appropriate results folder, for example,
twinbreak\results\experiment_3_1\log\log0.txt
for experiment_3_1.py. The output can be compared
to the utility and safety benchmark results in Table 8.
Specifically, the AVG Degradation value in the utility
benchmarks corresponds to the TwinBreak Utility
column for the respective model in Table 8, while the
StrongREJECT score in the Iteration 5 column
reflects the TwinBreak ASR column in Table 8. As with
previous experiments, we expect the reported values to
fall within a 1–5% range of those presented in the paper.

Hint. In order to clean up after executing the artifact, follow
the cleanup instructions in the README file of the GitHub
repository.

A.5 Notes on Reusability

The core functionality of TwinBreak is implemented
in TwinBreak.py. Configuration options and hy-
perparameters are managed via YAML files, with
twinbreak_default_settings.yaml serving as the
default configuration. Each parameter is documented in the
paper, the YAML file itself, and the corresponding Python
class TwinBreakConfig.py.

To evaluate TwinBreak on benchmark tasks, use the

https://github.com/tkr-research/twinbreak
https://github.com/tkr-research/twinbreak


TwinBreakAndEval.py wrapper, which extends the core
functionality of TwinBreak.py with evaluation capabilities.
Customizing Experiments: There are two main types of
configuration files:

• TwinBreak configuration (e.g., utility weight parame-
ters): Default: twinbreak_default_settings.yaml

• Experiment configuration (e.g., selected
model, benchmarks, batch size): Default:
experiment_default_settings.yaml

The entry point for running a complete experiment is
ExperimentExecutor.py, which provides a run() function
to execute the pipeline.
Hyperparameter Study: Configuration files used for the
hyperparameter analysis (as reported in Table 20 of the pa-
per) are available in the hyperparameter_study folder, with
H1.yaml being the first file.
Extending to New Models: To apply TwinBreak to mod-
els not currently supported, implement a new subclass of
the AbstractModel.py class. Then, reference your custom
model identifier in the experiment configuration file.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
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