
WOOT’24 Artifact Evaluation, Exploiting Android’s Hardened Memory Allocator

Philipp Mao Elias Valentin Boschung Marcel Busch Mathias Payer
EPFL, Lausanne, Switzerland

1 Overview

1.1 Abstract

The artifact contains the tooling used to develop the exploits.
It further contains exploit examples for our two exploitation
techniques along with the files needed to reproduce our case
study.

1.2 Description & Requirements

How to Access The artifact is publicly available at https:
//github.com/HexHive/scudo-exploitation.

Security, privacy or ethical concerns The artifact does not
contain any threat to the system it’s run on.

Hardware Dependencies The scudo libraries and the case
study require an x86_64 machine to be run.

The tooling is architecture independent, however we de-
signed the showcase of our exploits and tooling to be run on
an x86 machine.

Software Dependencies We provide dockerfiles for our
artifact evaluation, thus only Docker is required.

1.3 Evaluation Goals

The main focus of our artifact is making our tooling pub-
lic and providing examples for our exploitation techniques
to the community. We further include the necessary data to
reproduce our case study to show the applicability of our
exploitation techniques to real targets.

The evaluation should check if the example exploitation
scripts work and if the gdb plugin is usable. The evaluation
should also check if the case study reproduces.

2 Case Study

Paper Claim In our paper we claim that we leverage the
forged CommitBase exploitation technique to exploit the sys-
tem server on Android 14 to get code execution. In this part
of the artifact evaluation this claim is tested.

Evaluation To reproduce our case study we provide a Dock-
erfile that sets up an Android emulator with the vulnerable
library, along with installing the exploit app.

Build the docker in the case-study folder:
docker build . -t cve_emu

Then run the emulator along with the exploit:
docker run -rm -name emu -device /dev/kvm -it
cve_emu /bin/bash

It takes a little while as we reboot the emulator once to
make the libraries vulnerable. Once the following text is
printed we are attempting the exploit.

After this text has been printed, in another terminal run the
following commands:
docker exec -it emu /bin/bash
adb logcat | grep H3Ll0

This greps the logcat output for the print that we execute in
our ropchain. After about 5-20 attempts the following should
be printed:

When this is printed, our exploit was successfully repro-
duced. If our exploit succeeds a ROP chain is executed which

https://github.com/HexHive/scudo-exploitation
https://github.com/HexHive/scudo-exploitation


uses __android_log_print to print the H3Ll0 string to log-
cat.

3 GDB Tooling, Scudocookie Library & Ex-
ploit examples

Paper Claims In the paper we claim that we discovered
two exploitation techniques for Scudo, forged CommitBase
and safe Unlink. We further claim that we developed a GDB
plugin and a python3 library to help debug/exploit Scudo.
In this part of the artifact evaluation all of these claims are
checked by running two example exploits against a simple
heap menu program and then debugging the exploit using our
GDB plugin.

Evaluation The example exploits are located in the
exploits/ folder. In the following we provide a walkthrough
of this part of the artifact and showcase how our gdb tooling
and python3 scudocookie library can help in debugging the
exploit. We designed this part of the artifact evaluation so
the evaluator can follow along. Alternatively, for an evaluator
familiar with pwntools exploitation, the exploitation scripts
should be self-explanatory.

Our exploit examples use a simple heap menu pro-
gram which exposes a number of memory corruption
primitives to the user, arbitrary allocations and frees,
heap under/overflows etc.. The program is located at
exploits/malloc-menu-linux/malloc-menu-linux.
We also bundle all local dependencies along with two
versions of scudo.

3.1 Setup

In the exploits/ folder run the following commands:
./build_docker.sh.

3.2 Forged CommitBase

Start the docker using ./run_docker.sh and navigate to the
mounted folder using cd /mnt/exploits.

3.2.1 Exploit Functionality

Run the exploit:
python3 forged_commitbase.py.

Verify that the target arbitrary write address is the same as
the allocated chunk see Figure 1.

The two addresses marked in red should match. If they
match, the exploit was able to allocate a chunk at the chosen
target address.

Figure 1: output of running the forged commitbase example
exploit script.

3.2.2 GDB Plugin

Having verified the exploit works, let us look at what happens
under the hood and do some debugging. First start the exploit
with the debugger attached. If you are running the exploits in
the docker, first start tmux otherwise we will not be able to
attach GDB:
tmux
python3 forged_commitbase.py GDB

The exploit script automatically sets a breakpoint just after
the heap-menus program loop. We first jump to where we
allocate our victim chunk. In the gdb pane continue twice:
c
c

Now we have allocated our victim chunk. Take note of the
target address, this is the address where we want to have a
chunk get allocated. Copy the victim chunk address from the
top program pane and run the following command in gdb in
order to inspect the victim chunk.
scudo chunk [victim chunk address]

This will display some information about the victim chunk.
All GDB commands starting with scudo are implemented by
our Scudo gdb plugin. See Figure 3 for an example output.

In the next step we will overwrite this victim chunk’s
header. To do this we need to calculate the correct header
checksum. This is where our python3 scudocookie library
comes into play. Assuming we leak the chunk’s header and ad-
dress, we use this library to calculate the cookie used in com-
puting the header’s checksum. Afterwards we create a fake
secondary chunk header and correctly compute the checksum
for that chunk. The relevant lines involved in these steps can
be seen, in lines 50 and 56 of the forged_commitbase.py
exploit. In particular the forge_header function uses the
calc_checksum function from the scudocookie library to
compute the checksum.

Now keep continuing in GDB (with the c command), until
the following text is printed: [*] we free the chunk and
put our target address into the secondary chunk
free list

At this point we have finished forging the chunk. In the
gdb pane use the following commands to inspect the forged
secondary chunk:



scudo chunk [victim chunk addr]
scudo largeblock [victim chunk addr]

The victim chunk should now have Class ID 0 and the
CommitBase field of the secondary chunk header should point
to the target arbitrary write address. See Figure 4 for an ex-
ample output.

Continue once more in GDB:
c

Now the forged secondary chunk has been freed and our
arbitrary write address has been stored in the secondary chunk
free list. Inspect the secondary chunk free list using:
scudo largecachedblock

The data from the forged chunk header has been placed into
the secondary chunk free list. See Figure 5 for an example
output.

Continue one last time in GDB. This will allocate the chunk
at the target address. In our example exploit the newly allo-
cated chunk is now allocated in the Allocator object, which
holds Scudo internal metadata. Inspect the newly allocated
chunk:
scudo chunk [newly allocated chunk]
x/20gx [newly allocated chunk]

See Figure 6 for an example output.

3.3 Safe Unlink
Start the docker using ./run_docker.sh and navigate to the
mounted folder using cd /mnt/exploits.

3.3.1 Exploit Functionality

Run the exploit: python3 safe_unlink.py.
Verify that the allocated chunk via the exploit is located

close to the perclass base. see Figure 2.

Figure 2: output of running the safe unlink example exploit
script.

If the address of the newly allocated chunk is close to the
perclass base, this means the exploit was able to allocate a
chunk into the perclass structure, giving the attacker control
over the free list.

3.3.2 GDB Plugin

Same as for the Forged CommitBase exploit run the exploit
with GDB attached:
python3 safe_unlink.py GDB

Continue twice until the victim chunk is allocated:
c
c

Similar as before inspect the victim chunk. See Figure 7
for an example output.
scudo chunk [victim chunk addr]

This is the victim chunk whose header we will overwrite.
Similar to the last exploit we use the scudocookie library
to forge a fake secondary chunk. We also setup the fake
linked list as detailed in the paper. Step until you see
the following text printed: [*] now we free the fake
secondary chunk triggering the unlinking and
placing the address to the perclass structure
into the perclass free list itself .

At this point we have setup the fake linked list between
the forged chunk and the perclass free list. Inspect the forged
secondary chunk:
scudo chunk [victim chunk addr] scudo
largeblock [victim chunk addr]

Inspect the freelist into which we have freed chunks to
build the fake linked list:
scudo perclass 1 20

The fake free list is built with the perclass free list and
the forged secondary chunk by cleverly freeing chunks that
overlap the forged secondary chunk header (more details in
the paper). See Figure 8 to see an example output.

Now with the fake linked list built, we can free the chunk
to insert a chunk into the free list. Step once in gdb:
c

Inspect the free list again, now a pointer to the free list
itself has been inserted into the free list:
scudo perclass 1 20

See Figure 9 for an example output.
Step once more in gdb to allocate a chunk into the free list:

c
Inspect the free list a final time we should see the chunk

header in the free list: scudo perclass 1 20
See Figure 10 for an example output. This means that our

exploit was able to allocate a chunk into the free list and thus
gain control over the free list.

Images



Figure 3: Forged CommitBase: The chunk state after the victim chunk is allocated



Figure 4: Forged CommitBase: The forged secondary chunk.

Figure 5: Forged CommitBase: The secondary chunk free list containing our target write address



Figure 6: Forged CommitBase: The chunk allocated at our target address.



Figure 7: Safe Unlink: The chunk state after the victim chunk is allocated.



Figure 8: Safe Unlink: The fake linked list between the perclass free list and forged secondary chunk.

Figure 9: Safe Unlink: An address to the perclass free list has been inserted into the perclass free list itself.



Figure 10: Safe Unlink: A chunk has been allocated into the perclass free list. What can be seen is the chunk header.


	Overview
	Abstract
	Description & Requirements
	Evaluation Goals

	Case Study
	GDB Tooling, Scudocookie Library & Exploit examples
	Setup
	Forged CommitBase
	Exploit Functionality
	GDB Plugin

	Safe Unlink
	Exploit Functionality
	GDB Plugin



