
Artifact Appendix: Introduction to Procedural Debugging through Binary
Libification

Jonathan Brossard
Conservatoire National des Arts et Metiers, Paris

A Artifact Appendix

A.1 Abstract

The Witchcraft Compiler Collection (WCC) is a reverse en-
gineering framework aimed at manipulating ELF binaries,
published under a dual MIT/BSD permissive open-source
license. The present article focuses on the wld tool of this
framework, named the Witchcraft linker: wld.

This tool aims at libifying dynamically linked ELF exe-
cutables, meaning transforming them into shared libraries,
that may, in turn, be used and, for instance, loaded within exe-
cutable programs via calls to the dlopen() function of dynamic
linkers.

Unlike control-flow-based reverse engineering techniques
such as disassembly and decompilation, libification does not
involve solving undecidable problems, as seen in figure 1
representing libification as a reverse engineering technique.
Libification merely relies on modifying metadata within ELF
binaries, leaving .data and .text sections untouched. As such,
libification is expected to be both faster and more reliable.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The Witchcraft linker, wld, modifies its input ELF binary files.
This may render them unusable.

While libification itself is a relatively safe operation that
does not involve running untrusted code, loading shared li-
braries in memory is inherently an unsafe operation when
said libraries come from untrusted parties. It is worth noting,
in particular, that the dlopen() function may run constructors,
even if no library call to the shared library is made. Dynam-
ically linking against libified binaries exposes to the same
risks. As such, libifying and loading unknown or possibly
hostile code such as malware is not advised.

Since libification modifies compiled programs, it may in-
fringe on the intellectual property of proprietary software.
Users are advised to refer to their End User License Agree-
ments on a case-by-case basis.

A.2.2 How to access

The source code of the Witchcraft Compiler Collection is
available from https://github.com/endrazine/wcc un-
der a dual MIT/BSD license.

The specific version of the codebase tested in this arti-
cle, tagged v0.0.6 and release “woot24”, is available from
the following DOI: https://zenodo.org/doi/10.5281/
zenodo.11298208.

A test repository has been created at the ad-
dress https://github.com/endrazine/wcc-tests/
releases/tag/WOOT24 to evaluate the Witchcraft
linker, featuring the following DOI : https:
//zenodo.org/doi/10.5281/zenodo.11301408.

A.2.3 Hardware dependencies

To facilitate the evaluation, all tests have been docker-
ized. Evaluation should be performed on an AMD or Intel-
compatible 64-bits CPU, powerful enough to run Docker im-
ages. As such, a CPU i5 or better of generation 10 or more
recent is recommended. The image itself shall be under 4
GB in size ; hence, that much disk space will be required. A
machine featuring 16 GB of RAM or more is recommended.

A.2.4 Software dependencies

To facilitate the evaluation, all tests have been dockerized. As
such, installing Docker itself on a GNU/Linux test machine
is compulsory. Alternative host Operating Systems have not
been tested. The author used Docker version 26.1.1, build
4cf5afa.

A.2.5 Benchmarks

None

A.3 Set-up

A.3.1 Installation

Instructions to install Docker are available from https://
docs.docker.com/engine/install/.

https://github.com/endrazine/wcc
https://zenodo.org/doi/10.5281/zenodo.11298208
https://zenodo.org/doi/10.5281/zenodo.11298208
https://github.com/endrazine/wcc-tests/releases/tag/WOOT24
https://github.com/endrazine/wcc-tests/releases/tag/WOOT24
https://zenodo.org/doi/10.5281/zenodo.11301408
https://zenodo.org/doi/10.5281/zenodo.11301408
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/


Once Docker is installed on a 64bits GNU/Linux Intel
compatible machine, a Dockerfile may be downloaded from
https://zenodo.org/doi/10.5281/zenodo.11301408.

To build the test Docker image, one may copy this Dock-
erfile to /tmp/woot24/Dockerfile, and then from a terminal,
enter the /tmp/woot24 directory and type:

docker build . -t witchcraft:latest

This should produce a new image named witchcraft:latest.
This image should be visible near the top when entering the
following command from the terminal:

docker images

One can then run and enter the test container by running
the following command from the same terminal:

docker run -it witchcraft:latest

A.3.2 Basic Test

Provided the above commands worked properly, typing the
command “ls” followed by the “enter” key from the terminal
should list the following content within the test container:

Makefile README.md chroot-test loader loader.c
scripts test_all

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Copying, libifying, and loading the 435 executables in
the default PATH of a Linux Ubuntu 22.04 LTS 64bits is
practical and takes less than 3 seconds in total.

(C2): The following complex binaries can be libified:
OpenSSH server, Apache2, Nginx, GCC. Libification
takes less than 0.01 seconds.

(C3): The Google Chrome web browser can be libified. Libi-
fication takes less than 0.01 seconds.

A.4.2 Experiments

(E1): [Ubuntu 22.04] [1 human-minute + 1 compute-minute]:
Libify via wld and load via dlopen() the 435 binaries in
the default PATH of a Ubuntu 22.04 LTS distribution.
How to: Testing the libification of an entire Ubuntu
22.04 LTS distribution is facilitated by the test Docker
image detailed in chapter A.3.
Preparation: Enter the Docker test image as described
in chapter A.3 by running the command:

docker run -it witchcraft:latest

Execution: From the terminal prompt, type:
time make test

Results: Execution shall produce no error messages,
and run under 3 seconds.

(E2): [Complex binaries] [5 human-minutes + 5 compute-
minutes]: Libify via wld and load via dlopen() the com-
plex binaries OpenSSH server, Apache2, Nginx, GCC.
How to: Testing the libification of this complex set of
binaries in a replicable fashion is facilitated by the test
Docker image detailed in chapter A.3.
Preparation: Enter the Docker test image as described
in chapter A.3 by running the command:

docker run -it witchcraft:latest

Then install the required packages to be libified:
apt install -y openssh-server apache2 \
nginx gcc

Execution: From the terminal prompt, enter the follow-
ing command:
for testbin in /usr/sbin/sshd /usr/sbin/apache2 \
/usr/sbin/nginx ; do cp ${testbin} ./test ; \
time wld -libify -noinit ./test ; \
./loader ./test ; done

Results: Libification and loading shall produce no error
messages. Lbification of each binary shall take less than
0.01 seconds. The following message shall be displayed
exactly three times:

Loading of Library successful

(E3): [Chrome] [5 human-minutes + 5 compute-minutes]:
Libify via wld and load via dlopen() the Google Chrome
web browser.
How to: Testing the libification of Google Chrome in a
replicable fashion is facilitated by the test Docker image
detailed in chapter A.3.
Preparation: Enter the Docker test image as described
in chapter A.3 by running the command:

docker run -it witchcraft:latest

Chrome has some dependencies that must be installed
before the Chrome package itself. To install those de-
pendencies within the test Docker container, enter the
following command:

apt install -y fonts-liberation libasound2 \
libatk-bridge2.0-0 libatk1.0-0 libatspi2.0-0 \
libcairo2 libcups2 libdrm2 libgbm1 libgtk-3-0 \
libgtk-4-1 libnspr4 libnss3 libpango-1.0-0 \
libu2f-udev libvulkan1 libxcomposite1 \
libxdamage1 libxfixes3 libxkbcommon0 \
libxrandr2 xdg-utils

https://zenodo.org/doi/10.5281/zenodo.11301408


SRC ASM OBJ

EXE

LIB

Source code Assembly

Executable

Shared Library

Object file

Compiler Assembler

LinkerLibification

Decompilation

Disassembly

Figure 1: Libification as a reverse engineering technique.

To download and install the Google Chrome web browser
within the test Docker container, enter the following com-
mands:
wget https://dl.google.com/linux/direct/\
google-chrome-stable_current_amd64.deb
dpkg -i google-chrome-*.deb

Execution: From the terminal prompt, type:
cp /opt/google/chrome/chrome .
time wld -libify ./chrome
./loader ./chrome

Results: The libification time shall take less than 0.01
seconds. The following output shall be displayed by
the last command, indicating that Google Chrome has
indeed been libified and loaded via dlopen():
Loading of Library successful

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


