
Artifact Appendix
RIPencapsulation: Defeating IP Encapsulation on TI MSP devices

Prakhar Sah
Virginia Tech

sprakhar@vt.edu

Matthew Hicks
Virginia Tech

mdhicks2@vt.edu

A Artifact Appendix

A.1 Abstract

This artifact appendix describes how to use the toolchain and
reproduce functionality results for RIPencapsulation. The ar-
tifact contains source code for RIPencapsulation and several
benchmarks and is publicly available as a GitHub repository.
This artifact does not produce performance data for RIPen-
capsulation; it is intended to be used to demonstrate basic
functionality—exfiltration of IP Encapsulated firmware—on
real hardware.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact does not exploit any security breaches on evalua-
tors’ machines. The malicious code is run on the MSP430 tar-
get evaluation board and is not destructive to evaluators’ envi-
ronments. The only code running on the evaluators’ machines
are the debugger, post-processing and automation scripts.

A.2.2 How to access

RIPencapsulation is publicly available through its git
repository at https://github.com/FoRTE-Research/
RIPencapsulation. The repository contains RIPencapsu-
lation benchmark source code, automation/post-processing
scripts, as well as some prebuilt binaries to facilitate testing.

A.2.3 Hardware dependencies

RIPencapsulation was developed and tested on the
MSP430FR5994 (end-to-end attack) and MSP432P401R
(proof-of-concept) Launchpads.

A.2.4 Software dependencies

• msp430-gcc is the Texas Instruments (TI) open source
toolchain for MSP430 microcontrollers. It is necessary
to generate the benchmark binaries.

• mspdebug is a free, open source debugger for MSP430
MCUs. It is used to flash benchmark binaries on the
MSP430FR5994 launchpad.

• CCStudio is TI’s integrated development environment
for debugging TI’s microcontrollers and processors. It is
used for Debbuger Server Scripting (to erase IP encap-
sulated memory on MSP430FR5994) and for testing the
benchmarks on the MSP432P401R launchpad.

A.2.5 Benchmarks

All data required for the evaluation is part of the artifact.
We provide Texas Instruments and custom-developed bench-
marks. Some pre-compiled binaries for the MSP430FR5994
are included.

A.3 Set-up
A.3.1 Installation

RIPencapsulation: Clone the repository from
https://github.com/FoRTE-Research/
RIPencapsulation and follow the instructions provided in
the README.md.

msp430-gcc: We do not provide msp430-gcc as part
of the artifact evaluation repository; install it by fol-
lowing the instructions at https://www.ti.com/tool/
MSP430-GCC-OPENSOURCE.

mspdebug: A detailed description of the mspdebug in-
stallation process is available in README.md of the github
repository.

CCStudio: Install it by following the instructions at https:
//www.ti.com/tool/CCSTUDIO.

A.3.2 Basic Test

To check whether mspdebug is running and the target device
is connected correctly, use the command: mspdebug tilib.
Another important thing to verify is that the dss.sh script is
running correctly. To test this, run the following commands:
cd ∼/path/to/your/project/dir/eval/javascript/
dss.sh remove_ipe.js This will trigger some warnings

https://github.com/FoRTE-Research/RIPencapsulation
https://github.com/FoRTE-Research/RIPencapsulation
https://github.com/FoRTE-Research/RIPencapsulation
https://github.com/FoRTE-Research/RIPencapsulation
https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/CCSTUDIO


which you can ignore, but if the log says that dss.sh ∼/..
fails because dss.sh could not be found, then you need to
add the dss.sh script to the path using the instructions given
on the GitHub repository.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The evaluation goal of the artifact is to exfiltrate the
IPE memory and demonstrate the end-to-end attack on
multiple security-critical libraries compiled at different
optimization levels.

RIPencapsulation is an exploit that illustrates the vulner-
abilities present in the current implementation of IP En-
capsulation (IPE) security feature offered on Texas Instru-
ments MSP microcontrollers. It consists of three phases—
1) CPU register state dumps, 2) reverse-engineering, and
3)firmware exfiltration—explained in more detail in the pa-
per. The /eval/python/RIPencapsulation.py script au-
tomates the three phases of the attack by doing the following:

• flash the benchmark (IPE protected) along with the ma-
licious code on the MSP430FR5994

• collect the CPU register state dump on the workstation

• reverse-engineer the register state dump and guess the
IPE instructions

• perform more tests on the indirect load guesses to find
an IOP gadget

• reflash the device with the new malicious code

• collect the exfiltrated IPE memory dump

Besides demonstrating the three-phase attack on the
MSP430FR5994, the artifact also contains additional reverse-
engineering scripts, old evaluation results as well proof-of-
concept code for the MSP430P401R, in the interest of facili-
tating future research on the topic.

A.4.2 Experiments

To verify the functionality of the end-to-end attack in exfil-
trating the protected IPE firmware on the MSP430FR5994
launchpad, we recommend following this example workflow.
We have also provided some pre-built binaries for the bench-
marks, compiled at the -O0 optimization level. If you wish to
use these binaries directly, ignore step 1.

1. In msp430/Makefile, uncomment the BENCHMARK and
OPTFLAG you wish to evaluate. Build the binary using
the following commands on the terminal:
> cd ∼/path/to/your/project/dir/msp430/
> make clean
> make

2. In eval/python/RIPencapsulation.py, uncomment
the benchmark you wish to evaluate.

3. On the terminal, change the working directory to
eval/python/ by running the command:
> cd ∼/path/to/your/project/dir/eval/python/

4. Connect the MSP430FR5994 launchpad (via the USB
debug cable) to your workstation and run the python
script RIPencapsulation.py by entering the command
on the terminal:
> python3 RIPencapsulation.py

5. Give the script some time to complete execution. If the
script fails in the middle (due to serial communication
error), press CTRL+C to break out of the script and then
rerun it. In some cases, it might be required to hard reset
the device (by unplugging the launchpad and plugging it
back in) before a rerun.

6. If the script finishes execution displaying "Unsuccess-
ful: Could not find any indirect load instructions" this
means that the number of register dumps taken was in-
sufficient for finding any indirect load instructions. This
can be solved by changing the reg_dump_size and
reg_dump_sleep_time variables to bigger values. The
current values are set to work for the pre-built binaries.
Note that the bigger the values, the more time it will take
to exfiltrate the IPE memory.

7. If the script finishes execution displaying "Exfiltrat-
ing IPE firmware..." give it some time to exfiltrate
the IPE memory to an xlsx file (∼120sec). The ex-
filtrated dumps can be found in the eval/dumps/ di-
rectory. The exfiltrated IPE firmware can be found in
the file eval/dumps/exfiltrated_firmware.xlsx,
where the first column is the IPE address location and
the second column is the memory value at that location.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


