
Artifact Evaluation (AE) abstracts

Joe Loughry
Netoir

joe@netoir.com

Kasper Rasmussen
University of Oxford

kasper.rasmussen@cs.ox.ac.uk

1 Git repository

This is a git repository of source code used to collect and
analyze data from experiments in the paper.

1.1 Overview of experiments run
Two runs of experiments were done on LEDs and ESD pro-
tection diodes at 405, 532, 650, 780, 808, and 980 nm laser ra-
diation on a variety of 5 mm visible LEDs and glass enclosed
small signal diodes of the type used for ESD protection of
I2C bus connections on printed circuit boards.

C++ source code for the Arduino microcontroller
that controls the stepper motors—raster scanning
each laser in turn over the target area and measuring
the SDA bus voltage (0–3.3 volt) with the Arduino’s
analog-to-digital converter (ADC) at each point in
the raster scan, and writing it to a file—is in https:
//github.com/jloughry/basilisk_artifacts/blob/
main/experiments/LEDs/code/Arduino for LEDs and
https://github.com/jloughry/basilisk_artifacts/
blob/main/experiments/diodes/code/Arduino for
ESD protection devices.

1.2 Raw data
Transcripts of the output of these programs are in
https://github.com/jloughry/basilisk_artifacts/
blob/main/experiments/LEDs/data/raw_data and
https://github.com/jloughry/basilisk_artifacts/
blob/main/experiments/diodes/data/raw_data,
respectively.

Gnuplot scripts to extract and plot the data are
in https://github.com/jloughry/basilisk_
artifacts/blob/main/experiments/LEDs/data/ and
https://github.com/jloughry/basilisk_artifacts/
blob/main/experiments/diodes/data/, respectively.

R code for statistical analysis of the effect of el-
liptical beam axis rotation is in https://github.

com/jloughry/basilisk_artifacts/blob/main/
experiments/diodes/data/beam_rotation.r.

2 Installing and running the software

C++ source files are intended to be used with the Arduino IDE,
available from https://www.arduino.cc/en/software.

2.1 Required libraries
To compile the Arduino code, once you have the Arduino IDE
running, you need to install a couple of necessary libraries:
the Adafruit Motor Shield V2 Library, and the Adafruit PWM
Servo Driver Library, both of which are available from
the Library Manager in the Arduino IDE, by searching for
“Adafruit”. This is the recommended way to install Arduino
libraries now.

The Wire library should already be available by default.
Also in the Arduino IDE, if asked to set a board type, just use
“Arduino Uno”, the simplest type of Arduino AVR board.

For further information on the Adafruit li-
braries, including step-by-step instructions for in-
stalling the library, see https://learn.adafruit.
com/adafruit-motor-shield-v2-for-arduino/
install-software and https://learn.
adafruit.com/16-channel-pwm-servo-driver/
using-the-adafruit-library.

2.2 The basilisk toolchain
The Arduino code generates the data processed by Gnuplot.
Gnuplot is available from http://www.gnuplot.info/.
Gnuplot scripts are provided with a plot_all_data.sh shell
script in lieu of a Makefile.

Project IceStorm was successfully used on both macOS
14.4.1 and Ubuntu 20.04. To install the FPGA toolchain on
Ubuntu, follow the instructions at https://clifford.at/
icestorm#Where_are_the_Tools_How_to_install. See
Appendix A for a list of dependencies.

https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/code/Arduino
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/code/Arduino
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/code/Arduino
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/code/Arduino
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/code/Arduino
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/data/raw_data
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/data/raw_data
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/raw_data
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/raw_data
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/data/
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/LEDs/data/
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/beam_rotation.r
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/beam_rotation.r
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/diodes/data/beam_rotation.r
https://www.arduino.cc/en/software
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/install-software
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/install-software
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/install-software
https://learn.adafruit.com/16-channel-pwm-servo-driver/using-the-adafruit-library
https://learn.adafruit.com/16-channel-pwm-servo-driver/using-the-adafruit-library
https://learn.adafruit.com/16-channel-pwm-servo-driver/using-the-adafruit-library
http://www.gnuplot.info/
https://clifford.at/icestorm#Where_are_the_Tools_How_to_install
https://clifford.at/icestorm#Where_are_the_Tools_How_to_install


2.3 Verilog and FPGA
The process for taking a Verilog description of a logic circuit
and making it run on an FPGA is notionally:

yosys to take a Verilog source file and synthesize a logic
circuit design.

nextpnr to takes the logic circuit from yosys and place &
route logic gates to fit the FPGA chip’s internal intercon-
nection fabric.

icetime to simulate the design produced by nextpnr and
check for timing hazards.

icepack to produce a binary image that will be loaded into
the FPGA.

iceprog to upload the image into the chip.

After these steps are done, the FPGA chip acts like the
specified logic circuit, until a different description is loaded.

Figure 1: Raster scan apparatus used in experiments. This
photo will replace the one in the final paper, as it shows the
safety shield. A schematic of this device is Figure 5 of the
paper.

3 Hardware

The photograph shown above (Figure 1) will replace Figure 6
in the final paper, as it shows the laser safety shield in place.

The experimental apparatus consists of a pair of stepper-
motor–driven linear actuators configured for x–y motion to
raster scan a focused laser over the target area, approximately
1 mm2–25 mm2 depending on whether the target is an ESD
protection diode or LED. A schematic is given in Figure 5 of
the paper. To switch in different values of pull-up resistors
and vary the voltage on the I2C bus, a bank of relays is used.
Bus voltage is varied from 1.8 V to 5 V to mimic LVCMOS,
CMOS, and TTL logic families, and pull-up resistor values
varied from 1 kΩ to 10 kΩ in logarithmic steps. Sixteen runs
are done for every combination of LED wavelength and laser
wavelength, unless testing (for example) the effect of elliptical
beam axis rotation.

3.1 M5 CPU
M5, shown in Figure 2, is a minimalist CPU intended not so
much to show the practicality of the attack against real hard-
ware (Lattice Semiconductor iCE40-HX8K FPGA evaluation
board) but rather to highlight certain unique difficulties of the
attack, beyond the obvious ones like aiming and focusing.

This is a 4-bit computer with an accumulator that is visible
on the front panel. (Visibility is key to establishing a phase
lock on the internal state of the CPU.) It has a very simple
instruction set to make feasible the reachability analysis in
Figure 15 of the paper.

The particular FPGA chosen is not significant; the attack
should work on any CMOS logic family, as explained in the
paper. But most FPGA development tools are proprietary,
closed source, and expensive; in contrast, a completely open
source toolchain—Project IceStorm—exists for the Lattice
iCE40. Every step in the process is visible, down to a plain
text file containing an array of ones and zeros that is what
is actually uploaded into the interconnection fabric of the
FPGA.

Project IceStorm: https://clifford.at/icestorm.

Verilog source code for the CPU is available at
https://github.com/jloughry/basilisk_artifacts/
blob/main/experiments/M5/code/Verilog and
C++ source code for the attacker is available at
https://github.com/jloughry/basilisk_artifacts/
tree/main/experiments/M5/code/Arduino.
Makefiles are provided to synthesize, place & route, sim-

ulate (to check for timing hazards), and upload to the FPGA.

3.2 How the attack works
M5 runs the microcode for each instruction on a sixteen-step
cycle. Figure 3 shows a typical instruction, opcode mnemonic
STA, which stores the value currently in the accumulator
register to a specified memory location.

The attacker needs to know a lot about the CPU and the
program that is currently running to perform the attack suc-

https://clifford.at/icestorm
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/M5/code/Verilog
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/M5/code/Verilog
https://github.com/jloughry/basilisk_artifacts/tree/main/experiments/M5/code/Arduino
https://github.com/jloughry/basilisk_artifacts/tree/main/experiments/M5/code/Arduino


Figure 2: M5 CPU. A schematic of M5 will be included in
the final paper, an oversight noted by the reviewers.

cessfully. Firstly, the attacker needs to establish a phase lock
on the internal state of the CPU, and from it to accurately
measure the cycle time, because the entire attack is predicated
on cycle counting.

Here, phase locking is accomplished by watching the ac-
cumulator display for changes, because the display always
changes at a known microcode cycle. From the direction
and magnitude of the change, the attacker can deduce what
instruction was running (for example, INC or DEC if the accu-
mulator value changed by one, or STA if the value changed by
more than one). From the time between changes, the attacker
can calculate the cycle time by dividing by the number of
instructions executed between changes and looking up the
cycle time of each instruction, which may be different.

All this could be accomplished a different way simply by
watching the bus LEDs. We do it by means of the accumulator
simply to illustrate the general principle that the attacker is not
necessarily attacking the same LED as the one being watched.

After the attacker has established a phase lock and mea-
sured the cycle time, the attack proceeds by counting cycles
into a predicted part of the fetch–execute cycle and firing the
lasers at the instant when the desired value is known to be
on the bus. Typically, the laser fires more than once during
a particular instruction; for example, once to change the op-
code, again four and a half cycles later to change the memory
address, and five cycles after that to change the data being
written to memory.

We did not collect any data on the probability of the attack
being successful, because we found it to be completely reli-
able under the conditions we set up. The lasers are bolted in
position, aimed at the bus LEDs from a range of 2 cm, because
it removes an independent variable (aiming error) from the
experiment.

3.3 Lasers
The lasers used in this experiment were 405 nm near-UV
diode laser modules of unknown power rating that were

PC➔MAR

0
1

2

3

4

5
6

7
9

8

15
14

13

12

11

10

MDR➔IR

PC➔ALU

ALU➔PC

PC➔MAR

MDR➔
MAR

ACC➔MDR

PC➔ALU

(memory
read)

(ALU
add 1)

(memory
read)

(memory
read)

(and memory
write)

(ALU
add 1)

ALU➔PC

LASER FIRES
TO CHANGE

OPCODE

LASER FIRES
TO CHANGE
ADDRESS

LASER FIRES
TO CHANGE

DATA

↻

Figure 3: Timing diagram showing where the laser fires during
fetch and execution of a single instruction (here, STA for
“store accumulator”).

extracted from “cat toys” sold on Amazon.com at https:
//www.amazon.com/gp/product/B09Y4D7NFB/. In opera-
tion, they draw approximately 150 mA each from a 3.3 V sup-
ply, so their optical power must be < 500mW and is probably
considerably less, as they get warm in continuous operation.
These are absolutely not eye-safe and should never have been
sold as cat toys.

For safety when using 405 nm lasers, we recommend
an enclosure made from #2422 transparent orange poly-
carbonate sheet 3 mm thick, as shown above when that
apparatus was running at 405 nm.

The lasers are modulated by switching their power sup-
ply on and off with a MOSFET. Two important considera-
tions apply to these lasers; firstly, they need 3.3 V and will
burn out quickly at 5 V, but the MOSFETs won’t switch a
load less than their gate (control) voltage. So to make the
MOSFETs work and avoid burning out the lasers, always
switch 5 V through the MOSFET, and drop it down to 3.3 V
with an LM317 voltage regulator between the MOSFET and
the laser. The MOSFET modules used are available from
Amazon.com: https://www.amazon.com/dp/B07F5JPXYS
and the voltage regulators at https://www.amazon.com/
gp/product/B08CDMZMDN/.

These lasers were chosen for use because they exhibit quick
response when modulated in this way, typically < 100µs turn-
on and turn-off latency. Many other laser modules from other
sources, when measured, had a turn-on latency of more than
4000 µs, limiting modulation to < 0.25 kHz.

https://www.amazon.com/gp/product/B09Y4D7NFB/
https://www.amazon.com/gp/product/B09Y4D7NFB/
https://www.amazon.com/dp/B07F5JPXYS
https://www.amazon.com/gp/product/B08CDMZMDN/
https://www.amazon.com/gp/product/B08CDMZMDN/


See the external file
M5_remote_code_execution_480p.mov

for video.

Figure 4: Video of the remote code execution attack. It begins
with the computer running a scanning pattern on the accumu-
lator register. When the button on top is pressed, the lasers
begin firing at the green bus LEDs in the middle. After a few
seconds, the pattern on the accumulator LEDs has changed,
indicating that the computer is now running a completely dif-
ferent program.

4 I2C experimental apparatus

The apparatus shown in Figures 6 and 4 below is an improved
version of the one shown in Figure 16 of the paper, and will
replace that photo in the final paper. It was designed for at-
tacking a live I2C bus and comprises several devices on the
bus—addressable alphanumeric displays and a nonvolatile
memory chip—together with a microcontroller and ESD pro-
tection for the bus.

The target of the attack is a pair of 1N34A glass-enclosed
small signal diodes commonly used for electrostatic discharge
(ESD) protection for an I2C bus.1

These are mounted—for accessibility—on a mezzanine
board plugged into the top of an Arduino Uno microcontroller
(actually, a SparkFun clone with USB-C) in the center of the
baseplate. The same mezzanine board holds the 10 kΩ pull-up
resistors for the I2C bus, and an isolated photodiode amplifier
circuit used separately for speed tests on the lasers (Figure 5).

The Arduino here is really only used for two minor pur-
poses: it sends out commands on the I2C bus every few min-
utes to display the words “NORMAL OPERATION”, and it
also measures the voltage on the bus with its internal ADC,
drawing a bargraph on some off-board LEDs (connected to
GPIO pins) for help with aiming. There is also a tiny pushbut-
ton on the bargraph board (at the end of the rainbow ribbon
cable) to reset the target so it refreshes the display.

Other devices on the I2C bus, available for attacking, in-
clude an array of quad alphanumeric displays at address 0x70–
0x73, and a nonvolatile memory chip at address 0x50.

The baseplate is 6 mm aluminum plate, drilled and tapped
for mounting holes. The attacker is another Arduino Uno

1Actually, these are modern Schottky equivalents of the original germa-
nium component, but they work the same.

2
1k

1k
3

4
1k

1k
5

6
1k

1k
7

8
1k

1k
9

13
1k

SDA A0

SCL A1

10k 10k

3.3V

1N34A

LASER SPEED TEST

5V
10k 100

OUT

10

Figure 5: Schematic of the mezzanine board used as target in
the I2C attack. This is the green circuit board visible in the
center of the apparatus.

in the lower left corner of the baseplate; atop the attacker
is another mezzanine board holding the MOSFETs used to
modulate the lasers, and a red/green LED to indicate when
the attacker is ready, and whenever the lasers are firing.

Below the attacker there is a pushbutton to start the attack,
and a pair of BNC jacks for convenient access to connect and
oscilloscope for measuring the I2C bus, although these are not
connected to the attacker in any way, except mechanically.

When the button on the attacker is pressed, it fires the lasers
as fast as it can to impress a signal on the I2C bus, attempting
to write the words “PROOF OF CONCEPT” on the display.
The lasers, in this case, are 780 nm near-infrared, because that
is a good wavelength for ESD protection diodes. It has to
do this blindly, as it has no feedback from the I2C bus, so
for example it can’t detect a collision, nor can it read data
back from the memory chip. But the time needed to write
a complete message to the alphanumeric display is around
10 ms, so there is a very small time window for collisions to
occur.

Snapshots of the C++ source code for the attacker and
the target are available at https://github.com/jloughry/
basilisk_artifacts/blob/main/experiments/I2C/.

4.1 Data from experiments

See Figure 18 in the paper for an oscilloscope trace showing
both (1) successful communication via laser with another de-
vice on the I2C bus, and (2) the difference between a laser
impressing a signal and conventional electrical communica-
tion. This is an illustration of the general principle that the
attacker is often technically violating the specification but
nevertheless communicating successfully.

M5_remote_code_execution_480p.mov
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/I2C/
https://github.com/jloughry/basilisk_artifacts/blob/main/experiments/I2C/


Figure 6: Experimental apparatus used to demonstrate I2C
bus attack.

4.2 Mechanical

Vernier adjustments are provided for aiming the lasers. Each
vernier comprises a 40×40mm x–y linear actuator (ThorLabs
LX-20 or equivalent) bolted to the baseplate, onto which is
bolted a Quarton model QLM-1125 polar laser mount. The
polar axis of the mount provides easy coarse positioning—
in polar coordinates—for aiming, with the linear actuator
providing—in Cartesian coordinates—fine positioning capa-
bility. The polar and Cartesian coordinate systems are super-
imposed.

For precise focus, a second Quarton model QLM-1125 laser
mount is paired with pieces of a Quarton model QLM-1225
to construct a Cartesian coordinate system from two polar
coordinate systems, with θ1 fixed at zero, and θ2 fixed at π

2 ,
letting us treat r1 as x and r2 as y. This is bolted atop a z-axis
linear actuator (rack-and-pinion). It holds a 20 mm doublet
converging lens with a focal length of around 25 mm. This
arrangement allows the laser modules’ internal lenses to be
fixed at infinity.

Figure 7: Oblique view.

Appendix

A List of dependencies for Ubuntu

sudo apt-get install build-essential clang \
bison flex \
libreadline-dev gawk \
tcl-dev libffi-dev git \
mercurial graphviz \
xdot pkg-config python \
python3 libftdi-dev \
qt5-default python3-dev \
libboost-all-dev cmake \
libeigen3-dev

B Portability

M5 and its attacker fit in a 2U rackmount enclosure that can
sit on a table. The attacker is a separate 1U height rackmount
box. Both devices are USB powered.

The I2C apparatus is 250×350 mm and about 3 kg. It runs
on internal USB batteries.


	Git repository
	Overview of experiments run
	Raw data

	Installing and running the software
	Required libraries
	The basilisk toolchain
	Verilog and FPGA

	Hardware
	M5 CPU
	How the attack works
	Lasers

	I2C experimental apparatus
	Data from experiments
	Mechanical

	List of dependencies for Ubuntu
	Portability

