
USENIX WOOT’25 Artifact Appendix
DeepRed: A Deep Learning–Powered Command and Control Framework

for Multi-Stage Red Teaming Against ML-based Network Intrusion
Detection Systems

Mehrdad Hajizadeh†, Pegah Golchin†, Ehsan Nowroozi∗, Maria Rigaki‡,
Veronica Valeros‡, Sebastian García‡, Mauro Conti§, Thomas Bauschert†

†Technische Universität Chemnitz, Germany
∗Centre for Sustainable Cyber Security (CS2), University of Greenwich, UK

‡Czech Technical University in Prague, Prague
§University of Padua, Italy

mehrdad.hajizadeh@etit.tu-chemnitz.de

14.06.2025

A Artifact Appendix

A.1 Abstract

This document describes the artifacts accompanying the
USENIX Security ’25 publication DeepRed: A Deep
Learning-Powered Multi-stage Red Teaming Operations to
Reveal Vulnerabilities of ML-based Network Anomaly De-
tection.

The artifact includes a novel ML-based Network Intrusion
Detection System (ML-NIDS) benchmarking dataset, detailed
in Sections 4.6 and Appendix A.1. The dataset is generated
upon 30 diverse red team exercises covering various attack
objectives mapped to MITRE ATT&CK stages, with concur-
rently generated benign traffic (summarized in Table 8). We
also provide the code for the DeepRed Command-and-Control
(C2) framework, which demonstrates successful bot-to-C2
communication and execution of RCE for system discovery
and data exfiltration.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The DeepRed artifact involves a WebSocket-based communi-
cation framework between a Bot and a C2 server that requires
binding to local interfaces or opening specific ports. While the
artifact does not contain destructive payloads, it simulates ma-
licious behavior, such as remote command execution and data
exfiltration (from bot to C2), for evaluation purposes. Using
tools like Wireshark traffic analysis is encouraged to inspect
and validate the communication between components. Evalu-
ators should avoid executing the artifact with sensitive data

on production systems or machines (recommending isolated
tests).

A.2.2 How to access

The artifacts are uploaded on GitHub repository1. This repos-
itory contains all the necessary files and instructions to
run the DeepRed C2 framework. Multiple bots can con-
nect concurrently to the C2 server, and network traffic can
be captured during their execution. In addition, the TUC-
RedTeam30 dataset—which includes 30 diverse red teaming
scenarios with both benign and malicious activity mapped to
the MITRE ATT&CK framework—is available on Zenodo
DOI 10.5281/zenodo.156686852.

A.2.3 Hardware dependencies

• OS: Linux (Ubuntu +20.04)

• 2GB of disk space

A.2.4 Software dependencies

To execute the framework, Python 3.11 or later is required,
along with core dependencies including Scapy and tcpdump.
For a comprehensive list of required Python packages and
their versions, please consult the requirements.txt file.

1https://github.com/Mehrdad-hajizadeh/DeepRed-C2/tree/
v1.0

2https://zenodo.org/records/15668685

https://github.com/Mehrdad-hajizadeh/DeepRed-C2/tree/v1.0
https://github.com/Mehrdad-hajizadeh/DeepRed-C2/tree/v1.0
https://zenodo.org/records/15668685


Figure 1: A sample DeepRed C2 operation

A.2.5 Benchmarks

The TUC-RedTeam30 dataset included in this artifact was
used to evaluate several ML-based NIDS models, including
SSCL-IDS, FlowTransformer, CNN, KNN, and RF. These
models were tested on the dataset as part of the experiments
reported in the paper.

A.3 Set-up
The environment was set up using Ubuntu 20.04 as the oper-
ating system.

A.3.1 Installation

The DeepRed artifact is implemented in Python3.11 and
requires setting up a virtual environment with dependencies
listed in requirements.txt. After creating and activating the
environment, install the required packages using
pip install -r requirements.txt.

A.3.2 Basic Test

To verify the artifact operates as intended, a basic test can
be performed by running the two main components: the
DeepRed C2 server and the bot client. The system is de-
signed to run on Ubuntu 20.04 with Python 3.11 in a vir-
tual environment. After setting up the environment (detailed
in the README), the user launches c2-server.py, which
interactively prompts for network configuration. If no custom
input is provided, the server defaults to 127.0.0.1 and port
5000. It also allows enabling or disabling a runtime termina-
tion condition checker. In a separate terminal, the user starts
bot.py, which interactively requests the server IP and port,
whether adversarial perturbation is required, the number of
automated flow iterations, and whether to capture traffic into
a PCAP file. If adversarial perturbation is enabled, the bot
either loads a adversarial_perturbation.yaml configu-
ration (if present) or allows the user to input feature names
and their values manually (e.g., src2dst_max_ps: [150, 300]).

For traffic capture, the bot auto-detects the system’s available
interfaces and selects the one matching the server’s IP range.
Invalid inputs (e.g., unavailable interfaces or used ports) are
rejected with feedback prompts. This interactive approach
enables flexible configuration while ensuring valid inputs,
and is sufficient to test core functionality and produce observ-
able outputs including log files and optional PCAP traces, see
Figure 1.

A.4 Evaluation workflow
A.4.1 Major Claims

• (C1): The DeepRed C2 framework successfully emu-
lates bot-to-C2 communication, in which a randomly
generated action list representing malicious activities is
executed during the session. When configured accord-
ingly, DeepRed can apply adversarial perturbations to
selected network flow features by injecting crafted pack-
ets or padding messages with random strings to increase
the byte size—enabling the simulation of evasive behav-
ior against ML-based NIDS.

• (C2): A network traffic dataset, named TUC-
RedTeam30, was generated during a series of red
team attack scenarios, alongside concurrently generated
benign traffic. The NFStream library was used to extract
flow-level features from the raw PCAP files. These
flows were then labeled and enriched with metadata to
meet the requirements detailed in Appendix A of the
main paper.

A.4.2 Experiments

• (E1): In addition to the discussion in Section A.3.2, we
provide complete instructions for users to perform a
sample experiment on the target benchmark machine.
Further details are included in the README file, ac-
companied by a GIF demonstrating a sample interactive
implementation.
How to: Run the communication between the bot and
the DeepRed C2 server to observe automated remote
command execution and data exfiltration.
Execution: First, launch c2-server.py, then run
bot.py, ensuring both are correctly configured inter-
actively.
Output: While the C2 server is running, all logs are
stored in the deepred-c2/log directory. If data cap-
ture is enabled during bot.py execution, the correspond-
ing PCAP files will be saved in deepred-c2/pcap. Ad-
ditionally, when data exfiltration is selected as part of
the bot’s action list, sample files are randomly chosen
from deepred-c2/sample_file_to_exfil on the bot
side and transferred to the DeepRed C2 server under
deepred-c2/exfiltrated_data.



• (E2): The dataset is available in the GitHub repository
under the dataset directory and has also been published
on Zenodo with the DOI: 10.5281/zenodo.15662906. It
includes CSV files containing extracted flow features,
along with a selection of corresponding PCAP files. The
CSV file is labeled and include metadata that allows
users to identify and distinguish between the 30 indi-
vidual scenarios, as detailed in Appendix A of the main
paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


