ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

GlitchGliick: Enabling Software Vulnerabilities through Guided Hardware Fault
Injection

Zhenyuan Liu, Dillibabu Shanmugam and Patrick Schaumont
{zliul2, dshanmugam, pschaumont}@wpi.edu, Worcester Polytechnic Institute, Worcester, MA, USA

Abstract

While many software vulnerabilities are blamed on software
bugs, they can also be caused by hardware fault injection. Tra-
ditional fault injection methods rely on blind attacks based on
simplified fault models, such as instruction skipping. These
attacks require exhaustive experimentation across a wide
range of fault parameters, with the methodology inferred
solely from faulty outcomes, resulting in limited insight into
fault impact and an overall inefficient approach. We present
GLITCHGLUCK, a novel approach that combines a tool for
simulating hardware-software interactions with a methodol-
ogy for guiding fault injection. The tool observes the system
via scan-chain-accessible states and constructs the Dynamic
State Transition Graph (DSTG), a temporal representation of
how software instructions trigger interactions with hardware
components. By analyzing the DSTG, GLITCHGLUCK pin-
points fault injection parameters — such as when, where, and
what to fault without relying on predefined fault models — thus
avoiding the need for an exhaustive fault parameter search.
This targeted, data-driven method bridges the gap between
simulation and physical fault observation by using scan-chain.
GLITCHGLUCK is demonstrated on a physical OpenMSP430
ASIC chip with scan-chain support, and validated in simula-
tion on PicoRV32 (RV32I) and IBEX (RV32IM) to confirm
its applicability across different instruction set architectures
and microarchitectures. We assess the effectiveness of several
software countermeasures, such as instruction duplication and
pin verification, using layout-aware fault simulations to guide
fault attacks via clock glitching and laser-induced faults.

1 Introduction

Software vulnerabilities [41] have been extensively studied
for decades, with substantial efforts focused on mitigating
software-based exploits [13]. However, the execution of soft-
ware instructions is inherently tied to the processor microar-
chitecture, which introduces a second layer of vulnerabilities
at the hardware level. Numerous studies have demonstrated

that even when software vulnerabilities are addressed, both
the software and its exploit countermeasures remain vulner-
able to hardware fault injection [16]. Various fault injection
techniques induce distinct physical effects in the hardware, in-
cluding timing violations [4], power supply fluctuations [25],
laser-induced faults [46], temperature changes [48], electro-
magnetic (EM) interference [42], rowhammer effects [39]
and x-ray radiation effects [3]. Traditional fault injection is
commonly performed in a black-box manner, where faults
are exhaustively introduced across a broad range of parame-
ters [19]. Because the effect of a fault is difficult to predict,
blind attacks require extensive trial-and-error to discover ef-
fective fault parameters. This inefficiency reflects a deeper
challenge in fault injection: not merely introducing faults, but
doing so in a controlled and predictable manner.

Black-box methods lack a systematic strategy to pinpoint
the precise timing and location for fault introduction. Even
under identical fault conditions, physical noise can lead to
variations in fault outcome, making it difficult to reproduce
observed effects. Studies have shown that physical effects
such as voltage fluctuations or power surges can alter the
state of flip-flops, disrupting both control and data paths [27],
while clock frequency variations can modulate electromag-
netic and voltage behavior, impacting the success of fault
injection [26]. In addition, the impact of the fault is assessed
by observing only the immediate result, which could fall into
one of three cases: a faulty output, a correct output, or a sys-
tem timeout (no output). However, this assessment does not
provide enough insight into the trajectory from hardware fault
onset to software effect, leaving critical aspects of the fault’s
impact unexamined. Thus, it is difficult to understand how
fault countermeasures fail, and hence how to improve them.

White-box Approach. To address these limitations, fault
injection must be informed by an internal understanding of
how faults propagate from hardware to software, enabling
more effective fault campaigns. A white-box approach plays
a central role in this shift. By leveraging detailed hardware
knowledge, such as layout-level information, simulation can
analyze fault effects and guide physical fault injection, en-

abling more precise determination of when, where, and what
to fault, thereby reducing the complexity of a blind search.
For example, the work in [49] adopts microarchitectural fault
models to study how faults affect an open-source processor,
capturing effects that would be missed by instruction-level ab-
stractions. Previous works have also shown that models such
as instruction skipping are inadequate, as they fail to represent
the complex and unintuitive fault responses observed on hard-
ware [29,35]. While the need to access detailed models of the
hardware implementation may appear to be a strong require-
ment, the rise of open-source hardware has made white-box
analysis increasingly feasible. Platforms like RISC-V [18]
have driven the development of open-source root-of-trust sys-
tems [23,33], expanding the possibilities for studying fault
effects and building effective countermeasures. In parallel,
the tool flow for custom hardware has been transformed by
open-source initiatives, with frameworks like Chipyard [2]
and OpenROAD [1] enabling detailed design, simulation, and
analysis workflows.

Contribution. We introduce GLITCHGLUCK, which breaks
the quandary of blind fault injection by combining a simula-
tion tool with a methodology for guiding fault injection. The
tool observes the system through scan-chain outputs and con-
structs the Dynamic State Transition Graph (DSTG) — a tem-
poral, graphical representation that captures the interactions
between hardware components and software instructions. The
methodology then analyzes the DSTG to pinpoint critical fault
injection parameters to enable potential software vulnerabili-
ties. The simulation component of GLITCHGLUCK is used to
analyze fault manifestation and propagation, and it is not re-
sponsible for fault injection itself. The simulated attack param-
eters are used to guide the physical fault injection. Faults can
be observed through the scan-chain which serves as a bridge
from physical prototype to simulation, and which avoids the
assumptions of fault modeling. GLITCHGLUCK supports the
secure software developer by focusing the analysis on those
hardware fault effects that directly enable the software vul-
nerability. While hardware fault injection is well-established
as a method for exploiting software vulnerabilities, existing
software development tools do not support the analysis of
hardware-induced vulnerabilities. The key contributions can
be summarized as follows.

1. We present a tool that performs scan-chain-based state
simulation to capture hardware state transitions triggered
by software instructions, and visualizes these interac-
tions using a novel data structure, the DSTG.

2. We build a methodology based on the DSTG to identify
three critical parameters for target fault injection.

(a) The Vulnerable Decision State (VDS): A critical
state in the software execution flow where modify-
ing it can introduce software vulnerabilities.

(b) The Fault Injection State (FIS): The state in which
the fault should be injected to manipulate the be-
havior of the VDS.

(c) The Fault Injection Timing (FIT): The exact cycle
at which the fault should be injected into the FIS.

3. We demonstrate GLITCHGLUCK on a customized Open-
MSP430 ASIC (Application-Specific Integrated Circuit)
chip with scan-chain support, and confirm its porta-
bility in simulation on PicoRV32 (RV32I) and IBEX
(RV32IM). We evaluate several software countermea-
sures using layout-aware fault simulations to guide clock
glitching and laser injection attacks.

To support reproducibility, the source code for DSTG gen-
eration and analysis results are available online'.

Outline. This paper is organized as follows. Section 2 pro-
vides the necessary background for the paper. Section 3 re-
views related work. Section 4 presents the tool aspect of
GLITCHGLUCK. Section 5 outlines the guided attack method-
ology of GLITCHGLUCK with an example. Section 6 demon-
strates the application of GLITCHGLUCK on three different
processors. Finally, Section 7 concludes the paper.

2 Background

This section covers the attacker and fault models, sane vs.
weird machines, and how hardware faults cause software bugs.

2.1 Attacker Model

We consider an attacker capable of performing non-invasive or
semi-invasive fault injection techniques, such as clock glitch-
ing or laser-induced faults. The injected faults are assumed to
be transient, disappearing after a processor reset. We define a
faulty state as a system state that deviates through a hardware
fault. This deviation can manifest itself as incorrect register
values, unexpected control flow, or other abnormal behavior
that eventually affects the software layer. GLITCHGLUCK can
observe such a faulty state in two ways (Figure 1). In both
cases, the goal is to achieve the highest fidelity in fault capture.
One approach is to inject the fault into a white-box simulation,
documenting the fault propagation. Low-level design data —
such as layout-level timing information — is used to model
faults with high accuracy. Another approach is to observe the
fault directly on a physical prototype by capturing the low-
level state of the system through a scan-chain. A scan-chain
is a common test structure used in Integrated Circuit (IC)
testing that configures each register as part of a shift register,
enabling serial access to flip-flops. Scan-chain synthesis is
well supported in ASIC design flows [55, Chapter 15], allow-
ing automatic insertion of scan chains in standard-cell-based
designs. We acknowledge that a scan chain itself might be a
target of attack [37]; however, scan-chain-based attacks are
considered out of scope in this paper.

"https://github.com/Secure-Embedded-Systems/
woot2025-GlitchGluck/archive/refs/tags/woot25-artifact.
tar.gz

https://github.com/Secure-Embedded-Systems/woot2025-GlitchGluck/archive/refs/tags/woot25-artifact.tar.gz
https://github.com/Secure-Embedded-Systems/woot2025-GlitchGluck/archive/refs/tags/woot25-artifact.tar.gz
https://github.com/Secure-Embedded-Systems/woot2025-GlitchGluck/archive/refs/tags/woot25-artifact.tar.gz

simulation device

e

scan_in scan_out
Figure 1: The faulty state can be obtained by simulated fault
injection or by measuring the fault through a scan-chain of
the processor.

2.2 Classic Fault Model

Fault modeling in software has traditionally relied on high-
level instruction models. The framework introduced by Holler
et al. in [22] present a system-level analysis of software coun-
termeasures by simulating high-level hardware faults, target-
ing components such as memory cells or instruction execution.
These models focus primarily on two types of faults: instruc-
tion skipping and instruction replication.

Instruction Skip. This model results in the processor skip-
ping an instruction that was meant to be executed. The effect
of a skipped instruction depends on the type of the instruction.
Skipping branch instructions is desirable when the attacker
aims to change the control flow of the software, such as chang-
ing the outcome of a security-critical decision. Skipping data
movement instructions is desirable when the attacker aims to
change the data flow of the software, such as for differential
fault analysis of cryptographic applications. This fault model
has been used in various attacks [11,34], leading to the devel-
opment of countermeasures to mitigate its impact [36,57].

Instruction Replication. In this model, a fault causes the
processor to execute the same instruction multiple times. The
impact of replicated instructions on a software’s execution is
more subtle, and it only affects non-idempotent instructions.

While instruction-based fault models simplify fault simu-
lation, they fail to capture the full spectrum of complexities
present in real-world hardware. For instance, these models do
not account for faults within the microarchitecture itself, such
as faults in the data path or control logic. Faults can cause is-
sues like incorrect data fetching, processing, or writing, which
are not captured by the instruction skip or replication mod-
els. Additionally, traditional models overlook inexplicable
fault responses that may occur in actual systems. For exam-
ple, a hardware fault could trigger a core reset, unexpectedly
clearing the processor’s state and disrupting execution, or the
processor might become muted, halting instruction processing
without any apparent cause.

2.3 Sane and Weird Machine

A formal definition of the sane machine and weird machine is
introduced in [9]. The sane machine refers to the execution of

Fault Propagation Across Levels

Behavior if (input_length >= BUFFER_SIZE) Faulty Output

Instruction ' cmp input_length, BUFFER_SIZE; Faulty Instruction

RTL ::Ij_. Faulty Execution
Gate >4

Timing Power\ EM Laser

1 - @

Faulty Bit

Hardware

Layout LT
Fault Injection

Figure 2: A hardware fault is injected by exploiting the phys-
ical properties of the chip, propagating from the layout level
through the gate, RTL, and instruction levels, and ultimately
leading to a faulty output at the behavior level, which can
result in software vulnerabilities, such as a buffer overflow.

a program on a processor according to the programmer’s in-
tent, where the system follows a deterministic and predictable
path. It represents a fault-free execution flow, where the pro-
gram behaves exactly as expected, with no interference from
external faults. In contrast, the weird machine emerges when
faults cause the system to deviate from its intended execu-
tion path, transitioning it away from the sane machine. These
faults can take many forms, such as bit flips, memory corrup-
tion, or control flow errors. For example, the authors in [31]
visualize four potential patterns of the weird machine, high-
lighting its diverse manifestations. As a weird machine, the
system’s behavior becomes unpredictable, and the software
community calls the behavior of the weird machine unknown
due to the lack of insight into the hardware details. Modeling
the weird machine is highly challenging because its behavior
depends on system transitions between faulty system states,
and those states may never be a part of the original hardware
design. The key challenge lies in tracking these unknown
states and following their impact on the system’s behavior.
Accurately modeling the weird machine’s behavior would
require full knowledge of the hardware implementation. How-
ever, with a white-box modeling technique as adopted in this
work, the weird machine remains tractable. Starting from a
faulty system state, we can compute (simulate) the faulty sys-
tem next-states and thus reconstruct the emergent behavior of
the weird machine.

2.4 From Hardware Faults to Software Vulner-
abilities
In modern computing systems, software interacts with hard-
ware through several abstraction levels, each essential for the
proper execution of tasks. Software programs are initially
written in high-level programming languages and then com-
piled into machine-readable instructions. These instructions
are fetched, decoded, and executed by the processor’s mi-

croarchitecture at the Register Transfer Level (RTL), where
control signals manage the movement of data between regis-
ters and functional units. The RTL design is further synthe-
sized into gate-level logic, which is then mapped to a physical
layout, where the placement and routing of logic gates and
interconnections are optimized to implement the chip’s func-
tionality. When a hardware fault occurs by exploiting the
chip’s physical properties to induce disruptions, it propagates
in a bottom-up approach through the gate, RTL, and instruc-
tion levels, ultimately impacting software behavior (Figure
2). Such propagation could cause the processor to execute
unexpected instructions, eventually enabling software vulner-
abilities. For instance, a buffer overflow vulnerability [8] may
arise when a hardware fault disrupts the memory management
process, causing data to be written to unintended memory lo-
cations. Even when software-level countermeasures against
buffer overflow are implemented, hardware faults can bypass
these defenses [14,40]. Consider a buffer overflow counter-
measure that performs bound-checking to verify the size of
incoming data before copying it into a buffer. If a fault, such
as a clock glitch, disrupts the hardware execution and causes
the bound-checking to be skipped, the overflow protection
can be bypassed, allowing the buffer overflow to occur.

3 Related Work

Numerous studies have explored the challenges of identify-
ing the correct fault parameters for successful fault injection
attacks. Elmohr [12], Bozzato [6] and Roscian [45] have con-
ducted fault injections with thousands of trials, each requir-
ing significant effort to fine-tune parameters. Tunstall [51],
Selmke [47] and Van Herrewegen [52] have also demonstrated
that achieving meaningful fault effects requires extensive fault
injection attempts. From an attacker’s perspective, injecting
a large number of faults is acceptable since the process can
be automated, and only a few effective injections are needed
to achieve the objective. In contrast, for the designer, each
injected fault requires manual effort to trace, verify, and un-
derstand its impact on system behavior. For a countermeasure
designer, in particular, it is crucial to ensure that the coun-
termeasure functions correctly across the entire fault space.
While high-precision fault injection setups — such as low-cost
laser attack [24] or focused EM fault injection [44] — achieve
more targeted results, they rely on specialized equipment and
controlled environments, limiting their portability. In contrast,
GLITCHGLUCK leverages simulation-derived scan-chain data
to identify physical fault injection parameters. This white-box
approach reduces the complexity of physical setup search, sav-
ing time and costs while enabling more efficient fault space
exploration and guided fault injection.

The benefits of white-box modeling in fault effect analysis
have been demonstrated by several authors. Van Woudenberg
et al. show that incorporating fault effects from RTL-level
simulations into instruction-level simulators improves accu-

racy [53], and Laurent et al. critique conventional fault mod-
els for neglecting microarchitectural details, proposing an
RTL-to-software fault mapping [28]. Trouchkine also empha-
sizes that high-level abstraction models obscure underlying
fault effects in complex CPUs [50]. These and other stud-
ies [30,43] emphasize that traditional instruction-level fault
models overlook hardware-level complexities. Instruction-
level simulation frameworks such as ARCHIE [17], ARMORY
[21] and FaultFinder [38] enables fault analysis without
requiring RTL or physical access to the design. While these
tools are effective at highlighting fault vulnerabilities, they
operate at a coarser abstraction and lack visibility into the
low-level state transitions that give rise to faults. In compari-
son, GLITCHGLUCK visualizes software—hardware interac-
tions using white-box, cycle-accurate scan-chain data from
layout-aware simulations, then analyzes the resulting graphi-
cal data (the DSTG) to extract fault parameters applicable to
a physical chip, without dependence on classic fault models —
capabilities that higher-level simulation tools cannot offer.

4 GLITCHGLUCK: Tool Overview

This section presents the tool aspect of GLITCHGLUCK. We
begin by partitioning the scan-chain state to guide DSTG
generation in simulation, then outline the key components of
the DSTG and present the methodology for its construction.

4.1 Scan-chain State Partition

We define the scan-chain state of a processor as the complete
set of its register bits, which reflect the instantaneous sys-
tem state. For a fault injection to be considered successful
at the hardware level, it is crucial to understand how faults
injected into the hardware affect the state bits and, ultimately,
propagate to observable faults at the software level. However,
capturing the entire scan state at once is impractical, as the
state space grows exponentially with the number of registers.
Even a small core with 1000 flip-flops results in a state space
of 21990 Thus, it is impossible to visualize the entire machine,
weird or not, and it is challenging to keep track of even a
short sequence of states. The approach to managing this com-
plexity is to focus on the most relevant portions of the scan
state — those directly influencing security-critical operations.
Since security-sensitive decisions eventually come down to
individual instructions, there is always a specific point in the
execution flow, a single instruction or transition, that embod-
ies a hardware vulnerability, which in turn enables software
vulnerabilities. For example, Yuce et al. show that injecting a
single fault in a seven-stage pipelined processor can bypass
an instruction duplication countermeasure [58].

To address the complexity of tracking the entire scan state,
we avoid treating the entire system state as a flat set of regis-
ters. Instead, we partition the full state into smaller groups of
registers (Figure 3). Each group is treated as a unique state

Lo o0 § -

DSTG(PC) DSTG(R1) DSTG(R2) DSTG(OP1) DSTG(MEM_read)

The entire hardware state
A

Figure 3: Decomposition of the scan-chain state into individ-
ual word-level registers, each with its own distinct DSTG.

Hardware DSTG
state Value)(node)
' dge)
alue - (e
£ IR

£y @)(recuring
t

ransitions)

Figure 4: Key components of the DSTG.

space, with each group representing a word-level register and
defined by its own set of bits. This approach reduces the over-
all state space from 2" to 2*, where x is the number of bits in
each group. By breaking down the system into smaller, more
focused segments, the analysis becomes tractable over those
registers observed in each group. Each group is then treated
as a separate DSTG. We focus on registers within the proces-
sor, including both ISA-visible and non-visible ones, such as
general-purpose registers and memory buffers. These regis-
ters are directly tied to software execution, making them key
points where injected hardware faults can manifest and poten-
tially lead to software vulnerabilities. We introduce a specific
notation for each DSTG based on the name of the word-level
register. For example, DSTG(PC) refers to the DSTG gener-
ated from the Program Counter (PC), while DSTG(R1) refers
to the DSTG generated from the general-purpose register R1.
This enables tracking of potential vulnerabilities in specific
registers and captures a temporal view of system behavior
that static descriptions — such as assembly code or Hardware
Description Language (HDL) — cannot provide.

4.2 Definition and Key Components

The DSTG is a graph-based data structure that models the
evolution of the scan state over time during software execution
(Figure 4). Each node in the graph represents a word-level
register state at a specific timestamp, defined by the value
of the selected register, such as a 1-bit control register, a 32-
bit general-purpose register, or a 16-bit memory buffer. The
edges of the DSTG are labeled with clock cycle counts, which
capture the timestamp when the transition happens. Formally,
the DSTG is a graph G = (V, E, ¢) where V is a set of vertices,
E CV xVisasetofedges, and ¢ is an edge labeling function:

¢:E — {L| Lis an ordered list of timestamps in N}.

Edges can be transitioned multiple times, such as during loops
or recurring system events. When the interval between con-
secutive timestamps in /£ is constant, we denote that constant
by the loop period B; that is,

tiy1—t;=B foralli>O0.

4.3 Generation Flow

Figure 5 outlines the steps involved in the automated DSTG
generation process. The hardware system consists of an inte-
grated combination of the processor, memory, and firmware,
operating under a white-box approach. @ The software source
code is written with predefined input test vectors, then com-
piled into assembly and a binary image. @ The binary image
is loaded into the hardware simulation at startup. € Before
running the simulation, the scan state of the processor is par-
titioned inside of the simulation testbench, with each selected
word-level register treated as a unique state representation by
concatenating its individual bits. At every negative clock edge,
the output value of each state is recorded into a state data file
along with the corresponding simulation time in both clock
cycles and nanoseconds. @ The simulation is performed on
the gate-level netlist using a standard cell library, with the
layout-level Standard Delay Format (SDF) back-annotated
to incorporate gate delays and timing information. A Value
Change Dump (VCD) is generated to capture the transitions
throughout the simulation. @ Once the simulation is com-
plete, a time window is selected for plotting the DSTG, con-
centrating on periods where faults could potentially trigger
software vulnerabilities. For instance, if the objective is to
fault the buffer overflow mitigation, the window can be de-
fined to cover the entire execution of the string copy function
for the DSTG analysis. The start and end PC values are first
determined by analyzing the assembly, and the corresponding
start and end times are then identified by matching these PC
values in the state data file. (9 Based on the identified time
window and recorded state data, the DSTG for each register
is constructed and plotted. These graphs are the starting point
for the attack methodology explained in Section 5.

Capabilities and Limitations. For large DSTGs, the tool
supports (user-driven) dynamic time window selection and
state filtering to concentrate on specific execution phases.
Users can also isolate individual scan states to reduce mem-
ory and rendering overhead. The DSTG is constructed en-
tirely from scan-chain outputs observed during simulation,
providing a direct, non-speculative view of system behavior.
If dynamic user input is introduced during runtime and influ-
ences system state, those effects will be reflected in the DSTG.
If the input is never exercised, no corresponding transitions
will appear. Similarly, if runtime variations in temperature or
voltage are modeled in the simulation and affect gate behavior,
the resulting state transitions will also be captured. However,

@l SoIF | | @sim

. ASM
C !
Qe L4

'e Choose e Plot

always@(negedge clk):
fwrite(file, pc, %time);
fwrite(file, rl, %time);

valuel,, @cyclel,,,
valued,, @cycled,,

Test Source Load
Vector code Binary | Testbench |
File kx
©Orrep Partition State : C:
pe = {pc[15].Q, pc[14].Q,..., pc[0].Q}; i
rl ={rl[3].Q,r1[2].Q,r1[1].Q, r1[0].Q}; :
Document State | : rl:
i
1
1
1

valued,, @cycled,,;,
]

Plot Time DSTG
| State Generation
| Data
E D o e S e e - —— \\
1
valuel, @cyclel :
value? , @cycled ;
1Y pC?

value3,, @cycled @cycle2m:
1

1
1
1
1
1
1
per |
1
s 1
1
1
1
1

Figure 5: Automated DSTG generation flow.

the DSTG can only capture effects that are modeled and re-
flected in the simulation data. Physical phenomena — such
as analog noise or environmental fluctuations — can be repre-
sented in the DSTG only if they are explicitly modeled and
influence the scan-chain state during simulation. Otherwise,
such effects remain outside the scope of the DSTG.

5 GLITCHGLUCK: Attack Methodology

This section illustrate the methodology of GLITCHGLUCK on
a vulnerable string copy operation. By analyzing the DSTG
generated from this example, we aim to identify fault injection
parameters to exploit the vulnerability.

5.1 String Copy Vulnerability

Listing | presents a string copy operation using the function
strcpy (). The destination buffer has a size of 16 bytes, while
the attack string consists of 15 "A"s, followed by the memory
address of the malicious code (0x£020). The size of the input
string is designed to overflow the buffer, with the first null
byte (0x0) preventing the buffer overflow, and the second null
byte marks the end of the string. The goal of this attack is to
execute the malicious function by bypassing the first null byte
through fault injection, enabling the malicious memory ad-
dress to overwrite the return address of the main function and
redirect the program’s flow. The malicious function copies
the string "it is broken" into memory starting at address
0x200, demonstrating the effects of a successful fault injec-
tion. After the attack, the memory contents are dumped in the
testbench to confirm the result of the attack.

5.2 Attack Overview

The DSTG-guided fault injection takes a structured, four-step
approach to identify hardware-related software vulnerabilities
(Figure 6).

Listing 1: String copy operation and a malicious function.

void malicious (void) {

memcpy ((uint8_t *)0x200, "it_is_broken", 13);

}
char string[19] = "AAAAAAAAAAAAAAA\x0\x20\xf0\x0";

int main () {
char buffer[16];

strcpy (buffer, string);
return 0;
}

_DSTGs
{ :J» Step 1 Step 2 \- Step 3
[}
| | VDS FIS FIT | Voo
e | 1(5:3) (5.4) I—' (5.5)

ASM

Step 4 1
{l::l} Layout Glock |Validate[|aser Attack
Data Glitching (5.6) | Mmiestion —>Ou(t5(:-¢;;ne

Figure 6: Overview of DSTG-guided fault attack.

Step 1: Identify the VDS. Locate the critical hardware
state that, if faulted, can trigger a software-level vulnerability.

Step 2: Select the FIS. Determine the specific state where
the fault must be injected to influence the VDS.

Step 3: Specify the FIT. Pinpoint the exact time at which
the fault should be injected into the FIS.

Step 4: Validate the attack parameters. Use simulation
to confirm that the selected VDS, FIS, and FIT lead to the
intended faulty behavior. Leverage layout data to model real-
istic fault scenarios, and choose an appropriate fault injection
method, such as a global technique (e.g., clock glitching) or a
localized approach (e.g., laser injection).

DSTG(PC)

Step 0: ASM Assembly
strepy:
f090: mov rl2, rl4;
f092: mov.b @rl3+, rl5;
f094: mov.b rl5, 0(rl4);
f098: inc r14;
f09a: cmp #0, rl5;
fO9c: jnz $-10 ;abs 0xf092
fO9e: ret
f0a0: jmp $+0 ;abs 0xf0a0

DSTG(Status)

@775 + 10*n, n=0..14

Step 3: FIT @923 12ns

Figure 7: The assembly code for the string copy function,
along with the generated DSTG(PC) and DSTG(Status), cov-
ers the entire copying operation.

Once the fault is injected and the faulty VDS is reached,
the focus shifts from hardware-level concerns to traditional
software analysis, treating the injected fault as a software vul-
nerability and assessing its impact on the software’s behavior.

5.3 Step 1: Identify the VDS

Definition. A VDS is a critical state that influences the
system’s behavior, representing a decision point in the execu-
tion flow. This decision point arises when instructions, such
as branch operations, determine the next steps in program
execution. By manipulating a VDS through fault injection,
the execution path can be altered, potentially triggering the
software vulnerability. The VDS is typically defined in the
DSTG(PC), as it reflects the software program flow through
the PC register.

Demonstration. The assembly code for the string copy ex-
ample is shown in Figure 7, and the behavior of this copy
loop is visualized in the DSTG(PC). The DSTG(PC) shows a
roundtrip from state 0x£092 to 0x£09e, illustrating the pro-
cess of copying the string "A" 15 times, with the operation
exiting at cycle 925. At this point, the first null byte is encoun-
tered, causing the function to terminate safely without trig-
gering a buffer overflow. The ret instruction at state 0x£09%e
is pre-fetched in the DSTG, and it is not executed until the
condition is satisfied at cycle 925. The critical decision point
where the execution path is determined occurs at state 0xf£09c.
If the program continues to 0xf£092 (jump taken), a buffer
overflow can be triggered. However, if it terminates at 0x£09e
(jump not taken), the operation completes safely. We define
the VDS at state 0x£09c, as this is where the critical decision
occurs that can trigger a buffer overflow.

5.4 Step 2: Determine the FIS

Definition. The FIS refers to the state where the fault is
injected, and it must have a dependency into VDS. Any modi-
fication to the FIS directly influences the behavior of the VDS,
which ultimately alters the execution flow. A single VDS may
be associated with multiple FISs, but typically, the FIS closest
in time to the VDS is selected, as it is most likely to have the
immediate impact on the VDS.

Demonstration. The VDS, defined by instruction jnz
(jump if not Zero) at 0x£09c, must be taken to trigger a buffer
overflow, and this jump condition depends on the value of
the Zero Flag, which is located in bit 1 of the Status reg-
ister. The DSTG(Status) shows that the Zero Flagis set to
1 at cycle 924, which causes the jump to be skipped at cycle
925. If the Zero Flag is not set at cycle 924, the string copy
operation will continue and eventually overwrite the return
address, leading to a buffer overflow. Therefore, a fault is
required to disrupt the setting of the Zero Flag at cycle 924.
The FIS is defined as Status register (0x3) at cycle 924 to
fault the Zero Flag transition from O to 1. If this transition is
disrupted, the Zero Flag is likely to retain its previous value
of 0, which will alter the decision at the VDS, causing the
copy operation to continue and enabling a buffer overflow.

5.5 Step 3: Establish the FIT

Definition. The FIT is the precise moment when a fault is
injected, and this timing is crucial to achieve the desired fault
impact. To properly influence the VDS, the input value being
loaded into the FIS must be faulted, as this value directly
propagates to the FIS output, which subsequently drives the
VDS decision-making process. In digital hardware systems,
the behavior of a register is governed by clock edges. The
input value to a register is computed by its driving logic and
the updated outputs from its driving registers in preceding
cycles. This input data propagates through the datapath and
is loaded into the register at the next clock edge, updating
the register’s output. Thus, the register’s output reflects the
input value of the previous clock cycle; a trivial but important
observation to properly select the FIS.

Demonstration. Since the DSTG captures register output
transitions, and the FIS is defined as the state of the Status
register at cycle 924 (when the Zero Flag is updated to 1),
the FIT is automatically determined by parsing the VCD file
and analyzing the cycles leading up to cycle 924. This analysis
identifies cycle 923 as the point where the logic calculates
the input value for the Zero Flag. The value stabilzation to
1 after a 12ns logic propagation time stabilizes, within a 20ns
clock period, and then causes the Zero Flag to update in
cycle 924. Thus, the FIT is defined at cycle 923, with a 12ns
logic propagation time” of the Zero Flag.

2In hardare design, it is common to express the timing margin by slack, the
difference between the clock period and the logic propagation time. To select

PC_Next Register Input Arrival Time over Clock Cycles

N
o
L

@ PC_Next Register

m
£
o Y T e (Y S N
£ L]
F 104
s
=
sl v g1]
1 1 1 1 1 1 1 1 1
920 921 922 923 924 925 926 927 928 930
Clock Cycles
Zero Flag Ihput Arrival Time over Clock Clcles
w 204
£ ® Zero Flag
G)
£ <
F 101
g 10ns Glitch ¢ 13ns Glitch
L I B S ? o ¢ e o
920 921 922 923 924 925 926 927 928 930
Clock Cycles
Instruction Fetch Registey Input Arrival Timé overiClock Cycles
@ 204
E ® Fetch register
v
£
F 104
: T
Ele 1t o MiT | eidee
920 921 922 923 924 925 926 927 928 930

. Clock Cycles
Does not impact

other critical registers

Does impact
other critical registers

Figure 8: Input arrival times of the PC_Next, Zero Flag,
and Instruction Fetch registers across clock cycles 920
to 930 based on the layout data, highlighting how varying
glitch widths impact these registers at different times.

5.6 Step 4: Validate the Attack Parameter

Once the VDS, FIS, and FIT are established based on the
DSTG, these variables are used to guide the fault attack pro-
cess. The specific method of attack depends on whether the
fault injection is global or localized.

Global Fault Injection. In the case of global fault injection,
such as clock glitching, targeting specific bits within the FIS
is not feasible because a clock glitch impacts all registers
within the design. To influence the register update in the FIS,
the glitch must be injected at the cycle corresponding to the
FIT. The glitch width must be smaller than the logic propaga-
tion time of the FIT to ensure that the fault is applied before
the input value delivered to the FIS has fully stabilized. This
guarantees that the fault influences the register update and im-
pacts the VDS decision-making process. However, the fault
effect from glitching does not uniformly affect every register
in the same way. The logic propagation time at a registers’
input depends on the number of logic components involved
in the computation of that input. This path is different for
every register, and it can also change every clock cycle be-
cause of datapath reconfiguration in the hardware. Figure 8
illustrates the input arrival time of the PC_Next, Zero Flag,
and Instruction Fetch registers across clock cycles 920
to 930 based on the layout-level timing delay. This timing
variation emphasizes the importance of carefully selecting

fault injection parameters, the logic propagation time is a more convenient
metric.

Figure 9: Illustration of a 10um laser spot size affecting regis-
ters (blue rectangles) within a defined range, centered on the
target bit, during a localized fault attack based on layout.

the glitch width. For example, a glitch injected into cycle 923
with a width of 10ns will only affect the Zero Flag register.
On the other hand, if the glitch is injected at cycle 927 with
a width of 3ns, it will not only fault the Zero Flag register
but also affect critical registers such as the PC_Next and the
Instruction Fetch registers. The PC_Next register, in par-
ticular, plays a key role in determining the next instruction,
and any disruption to it could prevent the processor from cor-
rectly advancing to the following instruction. Thus, selecting
the proper glitch width is crucial for targeted fault injection.

Localized Fault. For more localized fault attacks, such as
laser injection, precise targeting of specific bits within the FIS
is achievable. We discuss the case of a laser attack scenario.
Laser illumination creates on-chip photo-currents and IR-
drop, and a common outcome is the flipping of the state bit of
a register [54]. The laser radius is selected to ensure that all
registers within the defined range, measured from the center
of each target bit, are affected by the bit-flip during the FIT.
The layout data, which provides the XY coordinates of all
registers on the die, is used to identify the registers within the
defined radius that will be affected (Figure 9). The bit-flip is
applied only after the target bit has stabilized, preventing any
interference during its transition phase.

5.7 Attack Parameter Simulation Result

In this example, we choose clock glitching as our attack
method and we inject a 11ns clock glitch at cycle 923, dis-
rupting the transition of the Zero Flag from O to 1. After the
attack, we examine the memory starting at address 0x200 and
find the ASCII string "69 74 20 69 73 20 62 72 6F 6B
65 6E" ("it is broken"),indicating that the return address
was overwritten and the malicious code was executed.

6 Experimental Results

GLITCHGLUCK is demonstrated on a physical OpenMSP430
ASIC chip using scan-chain-based fault observation, and eval-

Core Processor Cell Total Num. of DSTG
Type Register Gate Cell (Processor Only)
MSP430 [15] 660 4,033 8,081 100
PicoRV32 [56] 2,289 8,861 | 57,671 360
IBEX [32] 2006 6,698 | 13,455 192

Table 1: Breakdown of processor register cells, gate cells,
total cell counts, and the number of DSTGs generated for
processor-only registers in the OpenMSP430, PicoRV32, and
IBEX processors.

uated through fault parameter simulations on the PicoRV32
and IBEX to confirm its portability across different proces-
sors. This section begins by introducing the simulation setup,
followed by a detailed evaluation of each case study.

6.1 Simulation Setup

GLITCHGLUCK is demonstrated on three different proces-
sors: OpenMSP430, a multi-cycle RISC-based processor im-
plemented as a customized ASIC with scan-chain support; Pi-
coRV32, a multi-cycle RISC-V-based processor implementing
the RV32I instruction set; and IBEX, a three-stage pipelined
RISC-V-based processor implementing the RV32IM instruc-
tion set. While OpenMSP430 and PicoRV32 execute a sin-
gle instruction over multiple clock cycles, IBEX processes
instructions in parallel through its Instruction Fetch (IF), In-
struction Decode/Execute (ID/EX), and Write Back (WB)
stages. Each processor design incorporates various memory-
mapped peripherals, such as memory blocks, GPIOs, or copro-
cessors. All designs are implemented using 180nm standard-
cell technology and the layout data is used to extract the XY
coordinates of all registers on the die, including their timing
properties (SDF).

We exclusively focus on the processor register bits to gen-
erate the DSTGs, as these bits are critical for representing
system functionality and, if faulted, can potentially trigger
software-level vulnerabilities. Table | provides a breakdown
of the component counts, including processor register cells,
processor gate cells, total cell counts, and the number of
DSTGs generated from processor-only registers in each core,
which account for 14% of the total processor cells in Open-
MSP430, 21% in PicoRV32, and 23% in IBEX. Each node in
the DSTG represents the state value in hexadecimal.

For each case study, we first use the tool aspect of
GLITCHGLUCK to generate fault-free DSTGs, which serve
as the ground truth for identifying the VDS, FIS, and FIT.
Then, the methodology aspect of GLITCHGLUCK is applied
to guide fault injection, pinpointing fault attack parameters. A
fault simulation is subsequently performed by injecting faults
into the testbench to validate these parameters. If multiple
faults are required, we generate the DSTGs from the previous
fault simulation to guide the generation of the next VDS, FIS,
and FIT for each subsequent fault injection. All simulations

Listing 2: Buffer overflow mitigation via input size validation.

#define ASSERT (condition)
if (! (condition)) {
handle_error (__FILE__, __LINE__);

}

void handle_error (const char *file, int line) {
while (1) ;
}
char string[19] = "AAAAAAAAAAAAAAAA\x22\xf0\xO0";
int main () {
char buffer[16];
ASSERT (sizeof (buffer) > strlen(string));
strcpy (buffer, string);
return 0;

are executed on a gate-level netlist with back-annotation of
the layout-level SDF using ModelSim. Simulations are run on
a Xeon Gold 6248 CPU workstation with 384 GB of memory.

6.2 Breaking Buffer Overflow Mitigation

Setup. This experiment demonstrates the application of
GLITCHGLUCK to trigger a buffer overflow in a string copy
operation that is protected by an input size validation. The
countermeasure, a programmer-level defense, employs a cus-
tom ASSERT () macro (Listing 2) to check if the buffer
size exceeds the length of the string. If the check fails, the
handle_error () function is called, which enters a while
loop to mitigate the buffer overflow exploit. The attack
string is intended to overflow the buffer and trigger the error-
handling loop. The memory address of the malicious function
is 0x£022, and the corresponding C code is in Listing 1. The
software is compiled with the —00 flag, and the attack simula-
tion is demonstrated on OpenMSP430 using a single-clock
glitch. The simulation runs at a frequency of S0MHz, and the
DSTG plotting window covers the entire assertion checking.

Step 1: Identify the VDS. The compiled assembly code
demonstrates how the assertion checking prevents the over-
flow, and the DSTG(PC) shows that the countermeasure is
effective, with the program entering an error-handling loop
at instruction 0xf0a2 (Figure 10). The VDS is identified at
instruction 0xf08e, where the program decides whether to
branch to the infinite loop or proceed to the string copy func-
tion at 0xf096, potentially overflowing the destination buffer.

Step 2: Determine the FIS. To trigger an overflow, the
assertion check at instruction 0x£08c, which compares the
values of registers r12 (string input size) and r13 (buffer
size), must pass. The DSTG(r12) and DSTG(r13) reveal that,
just before reaching the VDS, the value update of r12 and
r13 at cycles 919 and 924 result in r12 holding the value
0x12 (18 in decimal) and r13 holding 0xf (15 in decimal).

OpenMSP430 (Fault-free)
DSTG(PC)

Step 0: ASM Assembly
main:

f088: mov.b #15, r13;#0x000f
fO8c: cmp rl2, rl3;

fO8e: jnc $+20 ;abs 0xf0al
f090: mov #518, r13; #0x0200
f094: movrl, rl;

f096: call #-393R; call strcpy

fOaR: jmp $+0; while loop

DSTG(r12) DSTG(r13)

Step 2: FIS
@925 + 1%, i=0..174

Values being
compared

Step 3: FIT @923 6ns

Figure 10: The assembly code for the bound checking func-
tion, along with the generated DSTG(PC), DSTG(r12) and
DSTG(r13), reflects the corresponding operations.

This configuration causes the assertion check to fail, as the
buffer size is smaller than the string input size. However, the
DSTG(r13) shows that its previous value was 0x213, which is
larger than the compared value of 0x12 in r12. Therefore, if
a fault interrupts the update to r13 at cycle 924, r13 may not
be set to 0xf as intended. Instead, it could retain its previous
value of 0x213, causing the comparison check to pass and
enabling the overflow. Thus, the FIS is identified as the state
of r13 (0xf) at cycle 924.

Step 3: Establish the FIT. The FIT is automatically es-
tablished at cycle 923, where the input value to register r13
is computing from 0x213 to 0xf. Analysis of the VCD file
shows that four bits of r13 stabilize within 6ns, while all crit-
ical register bits settle no later than 4.7ns, given a 20ns clock
period. To disrupt this transition and potentially preserve the
previous value 0x213, the FIT is established at cycle 923 with
a logic propagation time of 6ns.

Attack Parameter Simulation. A 5ns clock glitch is in-
jected at cycle 923, causing r13 to update to a value greater
than the expected 0x £. This disruption prevents the jump from
being taken at the VDS, and the malicious code is executed,
altering the intended program flow.

Physical Attack Validation. To validate the attack param-
eters identified during simulation, a post-silicon experiment
is conducted on the OpenMSP430 ASIC, fabricated using a
180nm System-on-Chip (SoC) with scan chain support. The
scan chain is utilized to monitor the register state before and
after fault injection, focusing on whether the fault causes the
value of r13 to exceed Oxf, triggering an assertion check.
The validation process begins by scanning in the scan state at
cycle 923, generated from the fault-free simulation, into the

0 0 O EuEWEN0x0207
0 0 0x001b
0 0x001f
00 1 0x000f
o

3

1 1 1 1
151413121110 9 8 7 6 5 4 210

1.6
1
o
o
o
o
o
o
|~
o
o
o

2.7
1
o
o
o
o
o
o
o
o
o
o

Clock Glitch Width (ns)
5.0
1 1
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

10.7
1
o
o
o
o
(=}
o
o
o
o
o
o

Figure 11: Measured scan-out values in register r13 after
clock glitch injection with varying glitch widths.

physical ASIC. A single glitch pulse is then injected using
an FPGA, with glitch widths ranging from 1ns to 10ns, to
evaluate the physical chip’s response across different attack
parameters. After the glitch is applied, the faulty scan state is
scanned out to observe the effect of the injected fault on reg-
ister r13. The results in Figure 11 show that for glitch widths
above 6ns, r13 retains its expected value of 0xf, indicating
no observable fault — consistent with the upper bound of the
attack parameters derived from simulation. For glitch widths
below 6ns, faulty bit flips occur in r13, producing values
greater than 0xf and eventually bypassing the bound check.
Glitch widths of 1.6ns and 2.7ns — falling below the lower
bound of simulation-derived attack parameters — fault critical
registers such as the instruction execute and PC regis-
ters, as expected. These high-impact faults result in processor
states that deviate from the targeted vulnerability, reinforcing
the precision of the simulated fault window. Moreover, across
repeated trials, glitching within the attack window exhibits
a high degree of determinism, producing the expected faults
in r13. This confirms that the simulation-guided parameters
effectively translate to reliable physical fault injection.

6.3 Bypassing Instruction Duplication

Setup. In this experiment, GLITCHGLUCK is applied to by-
pass a programer-level countermeasure that implements the
instruction duplication techniques proposed by Barenghi et al.
in [5]. Listing 3 shows the duplication of a load instruction
(1w), where a value is loaded from memory into the register
a2, and the same instruction is repeated in a different register,
a3. A comparison between these two registers is executed to
detect any discrepancies, ensuring that a single fault in either
load instruction is not bypassed. If a mismatch is detected, the
program enters an error-handling while loop. The software
is compiled with the -00 flag, and the simulation is demon-
strated on IBEX using two glitches. The clock period is 50ns,
and the DSTG plotting window visualizes the execution of
the three listed instructions.

Listing 3: Load instruction duplication.

asm
"lw_a2,_0(%0)\n"
"lw_a3,.,0(%0)\n"
"bne_a2,_a3, _handle_error\n"

IBEX (Fault-free)

DSTG(a2) step 1: VDS bne DSTG(a3)
00000001 D@20 + 1%, i=0..1 00000000 ID@20 + 1%, i=0..2

@22 @23

Step2: FIS ©T _—=¥%=Z7"" 1
0d187595 3IOD®23 + 1*#i, i=0..6 04187595 }1@24 + 1*, i=0..5
1

\\s -

Step. 3: FIT @21 3.5ns

Values being compared

Figure 12: Generated DSTG(a2) and DSTG(a3) based on the
simulation of Listing 3, showing the updates of both load
instructions in IBEX.

Proposed Approach. Two strategies are considered for by-
passing the countermeasure, as proposed in [58]. The first
approach involves injecting identical faults into both load
instructions, faulting their payloads in the same way. This
ensures that both registers receive the same faulty value, pre-
venting the system from entering the error-handling loop. The
second approach involves injecting a fault into one of the load
instructions, which causes the comparison to fail, followed
by another fault to bypass the bne check.

However, the authors in [58] found that they could not by-
pass the countermeasure by injecting two identical faults into
a seven-stage pipelined processor using clock glitching. The
failure of this strategy can be predicted by DSTG analysis.
The DSTG(a2) and DSTG(a3) generated from a fault-free
simulation in IBEX demonstrate that the 1w instruction loads
both registers with the random value 0x0d187595 from mem-
ory (Figure 12). The registers are updated in the WB stage
during clock cycles 22 and 23. Ideally, injecting identical
faults should produce the same faulty value in both registers.
However, variations in initial register values and fault propaga-
tion during execution make the outcomes unpredictable, even
with identical fault injections. The DSTG(a2) and DSTG(a3)
indicate that register a2 was previously populated with other
values, while a3 remained unchanged. This implies that even
if two identical glitches are injected, there is no guarantee that
both registers a2 and a3 will receive the same faulty value.
Although more localized attacks, such as laser fault injection,
can target specific bits, they still require precise knowledge
of which bits to flip and may involve modifying multiple bits
simultaneously at different locations to achieve the desired
effect. Thus, the second approach is explored to overcome
this countermeasure.

IBEX (After the First Glitch,
Faulting the Load Instruction of a2)

DSTG(a2) Step 1: VDS bne DSTG(is_set_branch)

00000001
—
" Step 2: FIS

Step 3: FIT @23 2.3ns

@1 + 1%, 1=0..20

00007500 D@23 + 1%, i=0..71

Faulted a2

Figure 13: Generated DSTG(a2) and DSTG(is_set_branch)
based on the simulation of Listing 3 after faulting the load
instruction of a2 in IBEX.

Step 1: Identify the VDS. The VDS is identified at the
branch instruction bne, which acts as a checkpoint in the
countermeasure, controlling the program flow.

First Glitch: Faulting the Load Instruction of a2. A fault
is required to disrupt the update of register a2 to 0x0d187595
at cycle 22 in DSTG(a2), forcing the bne check to fail (Figure
12). The FIS is identified as the state of a2 (0x0d187595) at
this cycle, and the FIT is automatically determined at cycle
21, with all toggled bits in a2 stabilizing within 3.5ns and no
critical register bits arriving later. A 3ns clock glitch is chosen
to disrupt the bit transitions in a2, and the resulting DSTG(a2)
in Figure 13 confirms the success of the fault, showing that a2
updates to 0x7500 instead of the expected 0x0d187595. This
fault alters the comparison in bne, resulting in the program
branching into an error-handling loop.

Second Glitch: Bypassing the Comparison. Immediately
after the first glitch, the DSTG(is_set_branch) register is set
from O to 1 at cycle 24 (Figure 13). This register controls
the branch enable in IBEX, triggering the branching into the
infinite loop. To bypass this, a second glitch is introduced.
The FIS for the second glitch is identified as the state of the
is_set_branch register (0x1) at cycle 24, and the FIT is
established at cycle 23, with a logic propagation time of 2.3ns.
A 2ns clock glitch is then injected at cycle 23, successfully
bypassing the load instruction duplication countermeasure in
IBEX, despite a2 and a3 holding different values (0x7500
and 0x0d187595, respectively).

6.4 Exploiting Pin Verification Protection

Setup. GLITCHGLUCK is applied to bypass the PIN ver-
ification countermeasure implemented in the FISSC tool-
box [10]. PIN verification is a security mechanism that com-
pares a user-provided PIN with a stored reference PIN to
determine access authorization. If the entered PIN matches
the stored value, authentication succeeds; otherwise, access
is denied. The toolbox offers multiple PIN verification rou-
tines, each with varying levels of protection. We demonstrate

PicoRV32 (Fault-free)
DSTG(PC) Correct PIN 'DSTG(PC) Incorrect PIN

0000072¢

A@606 + 1*n, n=0..6

Y@606 + 1*n, n=0..6

te 1:V
1@614 + 1*n, n=0..2 000730 2 D@614 + 1*n, n=0..2

y@618 + 1*n, n=0..8 3O@618 + 1*n, n=0..1

0000073¢
627 ‘. Only Difference
N
N
15@628« 1*n, n=0..1 @621 + 1*n, n=0..6
N

1
S @628 |

N
N
N
@631 + 1*n, n=0%3 @629 +1#n, n=0..5

00000742 3>

| S — P
Assembly (@635
byteArrayCompare: 0000740 ID@636 + 10, n=0..1
730: beq a4,a8,73c
734:1i ab,-86

738: sb a5,-2(s0)
73c: lw aB,-20(s0)
740: addi a5,a5,1

742: sw a5,-20(s0)

00000742 3>@639 + 1*n, n=0..8

Figure 14: Generated DSTG(PC) for correct and incorrect user
PIN verifications on PicoRV32, highlighting the differences
in execution flow.

our case study on VerifyPINS, a hardened implementation
designed to resist fault injection attacks, incorporating coun-
termeasures such as hardened Booleans, a fixed-time loop, a
step counter, and double-testing. The goal is to exploit faults
to bypass the verification process using an incorrect user PIN.
Both the user and reference PINs are four digits long. The
software is compiled with the -00 flag, and the simulation
is conducted on PicoRV32 using laser fault injection. The
simulation runs at 20MHz, with the DSTG plotting window
capturing the entire execution of the PIN verification process.

Step 1: Identify the VDS. To identify the VDS more eas-
ily in this example, two separate fault-free simulations are
performed: one with the correct user PIN and another with
an incorrect user PIN, where one byte differs. The only dif-
ference in the generated DSTG(PC) between the correct and
incorrect user PINs is shown in Figure 14, which occurs dur-
ing the execution of the first byteArrayCompare function.
The decision point occurs at instruction 0x730, a beq (branch
if equal) instruction, where the comparison result determines
whether the PIN verification succeeds or fails based on the
user input. Thus, we define the VDS as the beq instruction,
where the execution path diverges based on the user PIN.

Step 2: Determine the FIS. To identify the FIS that can
influence the behavior of the VDS, it is crucial to understand
what is being compared during the beq instruction, which dis-

PicoRV32 (Fault-free)
DSTG(op2) Correct PIN

DSTG(op2) Incorrect PIN

',, Values being
1 A
\ compared

Valu:es being
co::npared

Step 3: FIT @613
3.5ns

Figure 15: Generated DSTG(operandl) and DSTG(operand?2)
for correct and incorrect user PIN verifications on PicoRV32.

tinguishes the decision between the correct and incorrect user
PIN. In the PicoRV32 microarchitecture, the values for the
branch comparison are first loaded into registers operandl
and operand2. These values in the operand registers are
then compared, and the result of this comparison determines
whether the branch will be taken or not. Figure 15 shows
the generated DSTG(operand1) and DSTG(operand?2) for the
operand registers during the beq comparison of both correct
and incorrect user PINs. The comparison occurs after clock
cycle 613 (Figure 14), and at cycle 614, the first cycle of the
beq instruction, both operand registers are loaded with the val-
ues to be compared. For the correct user PIN, the values being
compared align with the correct PIN size (4). However, for the
incorrect user PIN, the DSTG(operand1) reveals a mismatch
in the comparison, where the values 3 and 4 are compared.
This discrepancy results from a single incorrect byte in the
user PIN, causing the comparison to fail and preventing the
branch from being taken. Therefore, the FIS is identified as
the state of operandl register (0x3) at cycle 614.

Step 3: Establish the FIT. The FIT is automatically deter-
mined at cycle 613, with a logic propagation time of 3.5ns for
all toggled bits in operandl register.

Identify Laser Attack Parameter. A laser spot radius of
10 microns (um) is selected, with the objective of flipping the
value in register operandl from 0x3 (0x0011 in binary) to
0x4 (0x0100 in binary), which requires flipping bits O to 2.
Using layout data, it is determined that six registers fall within
the target radius and are therefore susceptible to the bit-flip.
The feasibility of such an injection is supported by prior work
demonstrating the practicality of multi-laser fault injection
techniques, including multi-spot [7], double-laser [20], and
simultaneous laser injections [47], all of which can impact
multiple registers within a targeted area.

Case Core Sim DSTG Plot | DSTG

Study Type Time Time Depth

) ©) (cycles)
BuffOver (6.2) MSP430 8.5 5 173
InstrDup (6.3) IBEX 7 3 10
VerifyPINS (6.4) | PicoRV32 11 9 811

Table 2: The simulation runtime, DSTG plot generation time,
and the number of clock cycles covered in each DSTG plot
for each case study across different microarchitectures.

Attack Parameter Simulation. The impacted registers are
flipped after a delay of 4ns in cycle 613, and it successfully
bypasses the first byteArrayCompare function in the PIN
verification process with incorrect user PIN. However, Veri-
fyPINS includes a double-testing mechanism, which consists
of two consecutive byteArrayCompare functions. Thus, the
same attack parameters are applied for the second bit-flip,
which occurs after a delay of 4ns at cycle 1256. The sec-
ond flip targets the same register bits, and the pin verification
returns BOOL_TRUE despite the input user PIN being incorrect.

6.5 Discussion and Simulation Performance

Discussion. GLITCHGLUCK was successfully demon-
strated on a physical OpenMSP430 ASIC chip with scan-
chain support, confirming that simulation-derived fault pa-
rameters can be mapped to physical fault observations. Its ap-
plication to PicoRV32 and IBEX in simulation demonstrates
GLITCHGLUCKs portability across microarchitectures with
varying complexity and instruction sets. By visualizing the
fault-free hardware state before executing the attack, we gain
a better understanding of software-hardware interactions. This
approach offers advantages over blind attacks by minimizing
the need for exhaustive search and by improving the efficiency
of fault injection. Fault injection techniques, such as clock
glitching, require precise control over glitch parameters to
avoid affecting critical registers. Similarly, laser injection can
impact critical registers, depending on the radius of the tar-
get region. By representing the DSTG with layout data, we
can investigate why certain attack parameters fail — such as
when a critical register is faulted by the glitch, leading to an
undefined processor state — and why others lead to successful
outcomes, allowing for the refinement of attack parameters.
Compared to more complex cores like PicoRV32 and IBEX,
fault injection in OpenMSP430 is relatively simpler, as its
smaller size results in fewer hardware interactions, which
involves fewer critical registers that can be affected. This re-
duction in complexity allows faults to manifest in a more pre-
dictable manner, making attack strategies more intuitive when
guided by DSTG analysis. In contrast, attacking PicoRV32
and IBEX presents greater challenges, as determining attack
parameters that achieve the desired fault effect without impact-
ing critical registers requires more careful analysis. When the

attack parameters consistently involve critical registers, the
next step is to identify other FISs that contribute to the VDS
decision-making process, as a single VDS can be associated
with multiple FISs.

Simulation Performance. Table 2 summarizes the fault-
free simulation performance across the three case studies.
While the table does not include fault-injected scenarios, their
performance time is nearly identical to the fault-free case.
The time for documenting the state data of each word-level
register is included in the simulation runtime. The IBEX sim-
ulation runs slightly faster than the OpenMSP430 simulation
because IBEX processes only three instructions. In the buffer
overflow example, the time spent on the memory dump oper-
ation, which is used to validate the effectiveness of the attack
after the fault injection, is excluded from the reported total
simulation runtime. The table indicates that the PicoRV32
case study involves the most clock cycles for DSTG analysis,
as it includes the entire PIN verification function. However,
despite the higher number of clock cycles, the DSTG plot-
ting time remains similar across all case studies, indicating
that increasing the number of clock cycles has a small ef-
fect on overall DSTG generation time. Additionally, the time
spent parsing the VCD file for identifying the FIT is not doc-
umented, as only selected clock cycles are analyzed, resulting
in a negligible contribution to the overall runtime.

7 Conclusion

We propose GLITCHGLUCK for identifying critical hardware
states that enable software vulnerabilities. GLITCHGLUCK is
enabled by the DSTG, a novel data structure that visually
represents software-hardware interactions through a temporal
mapping, and that identifies vulnerable states in the inter-
action. The core innovation of our approach lies in a struc-
tured analysis of the hardware state, followed by targeted
fault injection based on this analysis. By prioritizing the iden-
tification of critical hardware states before fault injection,
GLITCHGLUCK ensures that faults are injected in a more fo-
cused manner without adopting fault model assumptions. This
approach reduces the need for exhaustive searches required in
traditional fault injection methods, which are based on black-
box fault models, improving the efficiency of security vulner-
ability detection and providing more targeted control over the
fault injection process. We demonstrate GLITCHGLUCK on
three different processors, with each processor successfully
bypassing a different software-level countermeasure. As part
of future work, an ASIC taped-out implementation of the
IBEX with scan-chain support is being designed to demon-
strate the application of GLITCHGLUCK in a physical envi-
ronment. In parallel, we are working to automate the method-
ology to allow automatic identification of attack parameters.

Acknowledgments. This research was supported in part by
NSF Award CNS-2219810.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. A.
Chhabria, D. K. Choo, M. Coltella, S. Dobre, R. Dreslin-
ski, M. Fogaca, S. Hashemi, A. Hosny, A. B. Kahng,
M. Kim, J. Li, Z. Liang, U. Mallappa, P. Penzes,
G. Pradipta, S. Reda, A. Rovinski, K. Samadi, S. S.
Sapatnekar, L. Saul, C. Sechen, V. Srinivas, W. Swartz,
D. Sylvester, D. Urquhart, L. Wang, M. Woo, and B. Xu.
OpenROAD: Toward a Self-Driving, Open-Source Digi-
tal Layout Implementation Tool Chain. In Proc. Govern-
ment Microcircuit Applications and Critical Technology
Conference, pages 1105-1110, 2019.

Alon Amid, David Biancolin, Abraham Gonzalez,
Daniel Grubb, Sagar Karandikar, Harrison Liew, Al-
bert Magyar, Howard Mao, Albert Ou, Nathan Pem-
berton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanovié, and Borivoje
Nikolié. Chipyard: Integrated design, simulation, and
implementation framework for custom socs. IEEE Mi-
cro, 40(4):10-21, July 2020.

Stéphanie Anceau, Pierre Bleuet, Jessy Clédiere, Lau-
rent Maingault, Jean-luc Rainard, and Rémi Tucoulou.
Nanofocused x-ray beam to reprogram secure circuits.
In Cryptographic Hardware and Embedded Systems—
CHES 2017: 19th International Conference, Taipei, Tai-
wan, September 25-28, 2017, Proceedings, pages 175—
188. Springer, 2017.

Josep Balasch, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. An in-depth and black-box characterization
of the effects of clock glitches on 8-bit mcus. In 2071
Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, pages 105-114. IEEE, 2011.

Alessandro Barenghi, Luca Breveglieri, Israel Koren,
Gerardo Pelosi, and Francesco Regazzoni. Counter-
measures against fault attacks on software implemented
aes: effectiveness and cost. In Proceedings of the 5th
Workshop on Embedded Systems Security, WESS ’ 10,
New York, NY, USA, 2010. Association for Computing
Machinery.

Claudio Bozzato, Riccardo Focardi, Francesco Pal-
marini, et al. Shaping the glitch: optimizing voltage
fault injection attacks. IACR transactions on crypto-
graphic hardware and embedded systems, 2019(2):199—
224,2019.

Brice Colombier, Paul Grandamme, Julien Vernay, Em-
ilie Chanavat, Lilian Bossuet, Lucie de Laulanié, and
Bruno Chassagne. Multi-spot laser fault injection setup:
New possibilities for fault injection attacks. In Inter-
national Conference on Smart Card Research and Ad-
vanced Applications, pages 151-166. Springer, 2021.

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

C. Cowan, F. Wagle, Calton Pu, S. Beattie, and
J. Walpole. Buffer overflows: attacks and defenses for
the vulnerability of the decade. In Proceedings DARPA
Information Survivability Conference and Exposition.
DISCEX’00, volume 2, pages 119-129 vol.2, 2000.

Thomas Dullien. Weird machines, exploitability, and
provable unexploitability. IEEE Transactions on Emerg-
ing Topics in Computing, 8(2):391-403, 2020.

Louis Dureuil, Guillaume Petiot, Marie-Laure Potet,
Thanh-Ha Le, Aude Crohen, and Philippe de Choudens.
Fissc: A fault injection and simulation secure collec-
tion. In International Conference on Computer Safety,
Reliability, and Security, 2016.

Jean-Max Dutertre, Timothé Riom, Olivier Potin, and
Jean-Baptiste Rigaud. Experimental analysis of the
laser-induced instruction skip fault model. In Secure IT
Systems: 24th Nordic Conference, NordSec 2019, Aal-
borg, Denmark, November 18-20, 2019, Proceedings
24, pages 221-237. Springer, 2019.

Mahmoud A. Elmohr, Haohao Liao, and Catherine H.
Gebotys. Em fault injection on arm and risc-v. In 2020
21st International Symposium on Quality Electronic De-
sign (ISQED), pages 206-212, 2020.

Ulfar Erlingsson. Low-level software security: Attacks
and defenses. In Foundations of Security Analysis and
Design 1V, pages 92—134. Springer, Berlin, Heidelberg,
2007.

Pierre-Alain Fouque, Delphine Leresteux, and Frédéric
Valette. Using faults for buffer overflow effects. In
Proceedings of the 27th Annual ACM Symposium on Ap-
plied Computing, SAC *12, page 1638-1639, New York,
NY, USA, 2012. Association for Computing Machinery.

Olivier Girard. openmsp430. https://opencores.
org/projects/openmsp430, 2017. Accessed Online
on 4/15/2024.

T. Given-Wilson, N. Jafri, and A. Legay. Combined
software and hardware fault injection vulnerability de-
tection. Innovations in Systems and Software Engineer-
ing, 16:101-120, June 2020. Received: 28 April 2019;
Accepted: 15 May 2020; Published: 27 June 2020.

Florian Hauschild, Kathrin Garb, Lukas Auer, Bodo
Selmke, and Johannes Obermaier. Archie: A gemu-
based framework for architecture-independent evalua-
tion of faults. In 2021 Workshop on Fault Detection and
Tolerance in Cryptography (FDTC), pages 20-30. IEEE,
2021.

John L. Hennessy and David A. Patterson. A new
golden age for computer architecture. Commun. ACM,
62(2):48-60, January 2019.

https://opencores.org/projects/openmsp430
https://opencores.org/projects/openmsp430

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Olivier Hériveaux. Black-box laser fault injection on
a secure memory. In Symposium sur la sécurité des

technologies de I’information et des communications-
SSTIC 2020, 2020.

Olivier Hériveaux. Defeating a secure element with
multiple laser fault injections. In Symposium sur
la sécurité des technologies de l'information et des
communications-SSTIC 2021, 2021.

Max Hoffmann, Falk Schellenberg, and Christof Paar.
Armory: fully automated and exhaustive fault simulation
on arm-m binaries. IEEE Transactions on Information
Forensics and Security, 16:1058-1073, 2020.

Andrea Holler, Armin Krieg, Tobias Rauter, Johannes
Iber, and Christian Kreiner. Qemu-based fault injection
for a system-level analysis of software countermeasures
against fault attacks. In 2015 Euromicro Conference on
Digital System Design, pages 530-533, 2015.

Bryan Kelly, Andrés Lagar-Cavilla, Jeff Andersen,
Prabhu Jayana, Piotr Kwidzinski, Rob Strong, John
Traver, Louis Ferraro, Ishwar Agarwal, Anjana
Parthasarathy, Bharat Pillilli, Vishal Soni, Marius
Schilder, Sudhir Mathane, Nathan Nadarajah, and Kor
Nielsen. Caliptra: A datacenter system on a chip (soc)
root of trust (rot). Technical report, AMD, Google,
Microsoft, July 2022.

Martin S Kelly and Keith Mayes. High precision laser
fault injection using low-cost components. In 2020
IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 219-228. IEEE, 2020.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In Advances in Cryptol-
0gy—CRYPTO’99: 19th Annual International Cryptol-
ogy Conference Santa Barbara, California, USA, August
15-19, 1999 Proceedings 19, pages 388-397. Springer,
1999.

Stefanos Koffas and Praveen Kumar Vadnala. On the
effect of clock frequency on voltage and electromagnetic
fault injection. In International Conference on Applied
Cryptography and Network Security, pages 127-145.
Springer, 2022.

Raghavan Kumar, Philipp Jovanovic, and Ilia Polian.
Precise fault-injections using voltage and temperature
manipulation for differential cryptanalysis. In 2014
IEEE 20th International On-Line Testing Symposium
(IOLTS), pages 43-48. IEEE, 2014.

J. Laurent, C. Deleuze, F. Pebay-Peyroula, and
V. Beroulle. Bridging the gap between rtl and software
fault injection. J. Emerg. Technol. Comput. Syst., 17(3),
May 2021.

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Johan Laurent, Vincent Beroulle, Christophe Deleuze,
Florian Pebay-Peyroula, and Athanasios Papadimitriou.
On the importance of analysing microarchitecture for
accurate software fault models. In 2018 21st Euromicro
Conference on Digital System Design (DSD), pages 561—
564. IEEE, 2018.

Johan Laurent, Vincent Beroulle, Christophe Deleuze,
Florian Pebay-Peyroula, and Athanasios Papadimitriou.
Cross-layer analysis of software fault models and coun-
termeasures against hardware fault attacks in a RISC-V
processor. Microprocessors and Microsystems: Em-
bedded Hardware Design , 71:102862, November 2019.
Conference: ASHA Convention. Boston, MA. 2018.

Zhenyuan Liu, Dillibabu Shanmugam, and Patrick
Schaumont. Faultdetective: Explainable to a fault, from
the design layout to the software. JACR Transactions
on Cryptographic Hardware and Embedded Systems,
2024(4):610-632, 2024.

LowRISC.
https://github.com/lowRISC/ibex, 2025.
cessed: 2025-01-20.

Ibex: A small and efficient risc-v core.
Ac-

LowRISC Community and Contributors. Opentitan:
The first open source silicon root of trust. Online:
https://opentitan.org/,2023. Available at https:
//opentitan.org/.

Alexandre Menu, Jean-Max Dutertre, Olivier Potin,
Jean-Baptiste Rigaud, and Jean-Luc Danger. Experi-
mental analysis of the electromagnetic instruction skip
fault model. In 2020 15th Design Technology of In-
tegrated Systems in Nanoscale Era (DTIS), pages 1-7,
2020.

Sébastien Michelland, Christophe Deleuze, and Laure
Gonnord. From low-level fault modeling (of a pipeline
attack) to a proven hardening scheme. In Proceedings
of the 33rd ACM SIGPLAN International Conference
on Compiler Construction, CC 2024, page 174-185,
New York, NY, USA, 2024. Association for Computing
Machinery.

N. Moro, K. Heydemann, E. Encrenaz, and B. Robis-
son. Formal verification of a software countermeasure
against instruction skip attacks. Journal of Crypto-
graphic Engineering, 4(3):145-156, February 2014.

Debdeep Mukhopadhyay, Shibaji Banerjee, Dipan-
wita Roy Chowdhury, and Bhargab B. Bhattacharya.
Cryptoscan: A secured scan chain architecture. In /4th
Asian Test Symposium (ATS 2005), 18-21 December
2005, Calcutta, India, pages 348-353. IEEE Computer
Society, 2005.

https://github.com/lowRISC/ibex
https://opentitan.org/
https://opentitan.org/
https://opentitan.org/

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Kit Murdock, Martin Thompson, and David Oswald.
Faultfinder: lightning-fast, multi-architectural fault in-
jection simulation. In Proceedings of the 2024 Workshop

on Attacks and Solutions in Hardware Security, pages
78-88, 2024.

Onur Mutlu and Jeremie S. Kim. Rowhammer: A ret-
rospective. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
39(8):1555-1571, August 2020.

Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi,
Junko Takahashi, Hitoshi Fuji, and Takafumi Aoki.
Buffer overflow attack with multiple fault injection and
a proven countermeasure. Journal of Cryptographic
Engineering, 7:35-46, 2017.

Frank Piessens and I. Verbauwhede. Software security:
Vulnerabilities and countermeasures for two attacker
models. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 990-999. IEEE,
March 2016.

Jean-Jacques Quisquater and David Samyde. Eddy cur-
rent for magnetic analysis with active sensor. In Pro-
ceedings of eSMART, volume 2002, 2002.

Jan Richter-Brockmann, Pascal Sasdrich, and Tim
Giineysu. Revisiting fault adversary models — hard-
ware faults in theory and practice. IEEE Transactions
on Computers, 72(2):572-585, 2023.

Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc
Danger, Julien Bringer, and Laurent Sauvage. High
precision fault injections on the instruction cache of
armv7-m architectures. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST), pages 62-67. IEEE, 2015.

Cyril Roscian, Jean-Max Dutertre, and Assia Tria.
Frontside laser fault injection on cryptosystems - ap-
plication to the aes’ last round -. In 2013 IEEE Interna-
tional Symposium on Hardware-Oriented Security and
Trust (HOST), pages 119-124, 2013.

Cyril Roscian, Jean-Max Dutertre, and Assia Tria.
Frontside laser fault injection on cryptosystems-
application to the aes’last round. In 2013 IEEE In-
ternational Symposium on Hardware-Oriented Security
and Trust (HOST), pages 119-124. IEEE, 2013.

Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on
a dfa protected aes by simultaneous laser fault injections.
In 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 36-46. IEEE, 2016.

Sergei Skorobogatov. Local heating attacks on flash
memory devices. In 2009 IEEE International Workshop
on Hardware-Oriented Security and Trust, pages 1-6.
IEEE, 2009.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Simon Tollec, Mihail Asavoae, Damien Couroussé,
Karine Heydemann, and Mathieu Jan. Exploration of
fault effects on formal risc-v microarchitecture models.
In 2022 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC), pages 73-83, 2022.

Thomas Trouchkine, Sébanjila Kevin K Bukasa, Math-
ieu Escouteloup, Ronan Lashermes, and Guillaume
Bouffard. Electromagnetic fault injection against a com-
plex CPU, toward new micro-architectural fault models.
Journal of Cryptographic Engineering, 11(4):353-367,
November 2021.

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh
Ali. Differential fault analysis of the advanced encryp-
tion standard using a single fault. In IFIP international

workshop on information security theory and practices,
pages 224-233. Springer, 2011.

Jan Van den Herrewegen, David Oswald, Flavio D Gar-
cia, and Qais Temeiza. Fill your boots: Enhanced em-
bedded bootloader exploits via fault injection and binary
analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 56-81, 2021.

Jasper van Woudenberg, Rajesh Velegalati, Cees-Bart
Breunesse, and Dennis Vermoen Riscure. Improving
cpu fault injection simulations: Insights from rtl to
instruction-level models. In 2024 Workshop on Fault De-
tection and Tolerance in Cryptography (FDTC), pages
1-9, 2024.

Raphael A. Camponogara Viera, Philippe Maurine, Jean-
Max Dutertre, and Rodrigo Possamai Bastos. Simula-
tion and experimental demonstration of the importance
of ir-drops during laser fault injection. /EEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 39(6):1231-1244, 2020.

Neil Weste and David Harris. CMOS VLSI Design:
A Circuits and Systems Perspective. Addison-Wesley
Publishing Company, USA, 4th edition, 2010.

Claire Wolf. Picorv32: A size-optimized risc-
v cpu. https://github.com/YosysHQ/picorv32,
2025. Accessed: 2025-01-20.

Yuan Yao and Patrick Schaumont. A low-cost function
call protection mechanism against instruction skip fault
attacks. In Proceedings of the 2018 workshop on attacks
and solutions in hardware security, pages 55-64, 2018.

Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santa-
puri, Chinmay Deshpande, Conor Patrick, and Patrick
Schaumont. Software fault resistance is futile: Effective
single-glitch attacks. In 2016 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC), pages
47-58, 2016.

https://github.com/YosysHQ/picorv32

	Introduction
	Background
	Attacker Model
	Classic Fault Model
	Sane and Weird Machine
	From Hardware Faults to Software Vulnerabilities

	Related Work
	GlitchGlück: Tool Overview
	Scan-chain State Partition
	Definition and Key Components
	Generation Flow

	GlitchGlück: Attack Methodology
	String Copy Vulnerability
	Attack Overview
	Step 1: Identify the VDS
	Step 2: Determine the FIS
	Step 3: Establish the FIT
	Step 4: Validate the Attack Parameter
	Attack Parameter Simulation Result

	Experimental Results
	Simulation Setup
	Breaking Buffer Overflow Mitigation
	Bypassing Instruction Duplication
	Exploiting Pin Verification Protection
	Discussion and Simulation Performance

	Conclusion

